. 24/7 Space News .
STELLAR CHEMISTRY
Single Burst of Star Formation Created Milky Way's Central Bulge
by Staff Writers
Baltimore MD (SPX) Oct 28, 2020

Stock illustration of the Milky Ways's central bulge.

Our Milky Way galaxy is shaped like two fried eggs glued back-to-back. A central bulge of stars sits in the middle of a sprawling disk of stars. Though this is a common feature among myriad spiral galaxies, astronomers have spent decades puzzling out how and when the Milky Way's central bulge might have formed. Were the stars within the bulge born early in our galaxy's history, 10 to 12 billion years ago? Or did the bulge build up over time through multiple episodes of star formation?

Some studies have found evidence for at least two star-forming bursts, leading to stellar populations as old as 10 billion years or as young as 3 billion. Now, a comprehensive new survey of millions of stars instead finds that most stars in the central 1,000 light-years of the Milky Way's hub formed when it was engorged with infalling gas more than 10 billion years ago. This process might have been triggered by simple accretion of primordial material, or something more dramatic like merging with another young galaxy.

"Many other spiral galaxies look like the Milky Way and have similar bulges, so if we can understand how the Milky Way formed its bulge then we'll have a good idea for how the other galaxies did too," said co-principle investigator Christian Johnson of the Space Telescope Science Institute in Baltimore, Maryland.

"This survey gives us a big picture view of the bulge in a way that many previous surveys have not been able to do," added co-author Caty Pilachowski of Indiana University in Bloomington, Indiana.

Looking Younger Than Their Age
To reach their conclusion, the team studied the stars' chemical compositions. Like many Hollywood stars, stars in the galactic bulge look like they've undergone a cosmic Botox treatment - they appear younger than they are.

That's because they contain about the same amount of heavy elements (heavier than hydrogen and helium) as the Sun - what astronomers call metals. That's surprising because metals take time to accumulate. They must be created by earlier generations of stars, ejected through stellar winds or supernovas, and then incorporated into later generations.

Our Sun, at 4.5 billion years old, is a relative newcomer, so it makes sense that it would be replete in metals. In contrast, most old stars within our galaxy are lacking in heavy elements. And yet bulge stars are metal enriched despite their advanced age.

"Something different happened in the bulge. The metals there built up very, very quickly, possibly in the first 500 million years of its existence," said co-principal investigator Michael Rich of the University of California, Los Angeles.

The team used the measured brightness of stars at different wavelengths of light, particularly in the ultraviolet, to determine their metal content. Stars forming at different times would be expected to have different metallicities on average.

Instead, they found that stars within 1,000 light-years of the galactic center showed a distribution of metals clustered around a single average. If stars were students and metallicities were U.S. grades, bulge stars would all have a solid 'C' average, rather than a group of 'A' students and a group of 'D' students. This suggests that those stars formed in a brief firestorm of star birth.

Big Pictures, Big Data
The team surveyed a portion of the sky covering more than 200 square degrees - an area approximately equivalent to 1,000 full Moons. They used the Dark Energy Camera (DECam) on the Victor M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory in Chile, a program of NSF's NOIRLab. This wide-field camera is capable of capturing 3 square degrees of sky in a single exposure.

The team collected more than 450,000 individual photographs that allowed them to accurately determine chemical compositions for millions of stars. A subsample of 70,000 stars were analyzed for this study.

"Our survey is unique because we were able to scan a continuous section of the bulge at wavelengths of light from ultraviolet to visible to near-infrared. That allows us to get a clear understanding of what the various components of the bulge are and how they fit together," said Johnson.

The wealth of data collected by this survey will fuel additional scientific inquiries. For example, the researchers are looking into the possibility of measuring stellar distances to make a more accurate 3D map of the bulge. They also plan to seek correlations between their metallicity measurements and stellar orbits. That investigation could locate "flocks" of stars with similar orbits, which could be the remains of disrupted dwarf galaxies, or identify signs of accretion like stars orbiting opposite the galaxy's rotation.

Is the Milky Way's bulge-formation history unique or common in galaxy evolution? To answer that question, astronomers will have to look at galaxy assembly in the distant, young universe - a task for which NASA's James Webb Space Telescope was specifically designed. "With Webb, we'll have a front-row seat to watching galaxies like our Milky Way forming," said Rich.

The Blanco DECam Bulge Survey is named in honor of Victor and Betty Blanco. Victor Blanco was the first Director of the Cerro-Tololo Inter-American Observatory; he and Betty Blanco also pioneered study of the galactic bulge and Magellanic Clouds using the observatory's 4-meter telescope. References:

Research Reports: "The Blanco DECam Bulge Survey. I. The Survey Description and Early Results" and "Blanco DECam Bulge Survey (BDBS) II: Project Performance, Data Analysis, and Early Science Results" and Research paper


Related Links
Space Telescope Science Institute
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Evidence of broadside collision with dwarf galaxy discovered in Milky Way
Troy NY (SPX) Oct 21, 2020
Nearly 3 billion years ago, a dwarf galaxy plunged into the center of the Milky Way and was ripped apart by the gravitational forces of the collision. Astrophysicists announced that the merger produced a series of telltale shell-like formations of stars in the vicinity of the Virgo constellation, the first such "shell structures" to be found in the Milky Way. The finding offers further evidence of the ancient event, and new possible explanations for other phenomena in the galaxy. Astronomers ident ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA, Department of Energy expand on more than 50 years of collaboration

NSF and CASIS select five transport phenomena projects for flight to ISS

Designer of Failed Oxygen Supply System on Russian Side of ISS Rules Out Production Defect

China passes export law protecting national security, covering tech

STELLAR CHEMISTRY
Shetland spaceport boosts UK's plans for launch

ABL Space Systems performs integrated stage test of the RS1 launch vehicle

The Propulsion We're Supplying, It's Electrifying

Isar Aerospace prepares the launch of its rockets from space centre CSG

STELLAR CHEMISTRY
Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

Leonardo at work on robotic arms for the NASA and ESA Mars Sample Return mission

Perseverance rover bringing 3D-printed metal parts to Mars

NASA InSight's 'Mole' is out of sight

STELLAR CHEMISTRY
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

STELLAR CHEMISTRY
Projecting favorable perceptions of space

1mu Space advanced on future technology and expects to complete fundraising at more than $100 million valuation

ESA and GomSpace Luxembourg sign contract for continued constellation management development

Kepler Communications awards service agreement to Momentus

STELLAR CHEMISTRY
Microsoft cloud computing looks to the stars

Soyuz MS-17 delivers resupply of Dosis-3D pouches

SPAINSAT NG program completes Preliminary Design Review

Current Chernobyl-level radiation harmful to bees: study

STELLAR CHEMISTRY
Microbial diversity below seafloor is as rich as on Earth's surface

Smile, wave: Some exoplanets may be able to see us, too

AI and photonics join forces to make it easier to find 'new Earths'

Two Planets Around a Red Dwarf

STELLAR CHEMISTRY
The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.