. 24/7 Space News .
TECH SPACE
Seeking a new generation of light-based sensing systems
by Staff Writers
Washington DC (SPX) Dec 06, 2015


Other potential applications include collision avoidance systems for small unmanned aerial vehicles (UAVs) maneuvering in tight indoor spaces, precision motor control for robotic limbs and fingers, high-capacity light-based communications and data-transfer systems, and sophisticated gaming or training modules in which LIDARs would open up new worlds of immersive experience just as GPS and motion-sensing accelerometers have done in today's systems.

Find a way to replace a large, heavy and expensive technology with an equivalent one that's a lot smaller, lighter and cheaper and you have a shot at turning a boutique technology into a world changer. Think of the room-sized computers of the 1940s that now are outpowered by the run-of-the-mill central processing units in laptop computers.

Or the miniaturized GPS components that contribute geolocation smartness in cell phones. DARPA program manager Joshua Conway has another shrinking act in mind: packing the light-catching powers of bulky lens-filled telescopes onto flat, semiconductor wafers that are saucer-sized or smaller, featherweight and cheap to make.

The primary goal of the newly-announced Modular Optical Aperture Building Blocks (MOABB) program is to develop the advanced technologies it will take to build ultracompact light detection and ranging (LIDAR) systems, which use light to image objects and their motions in the same way that RADAR systems use radio waves.

A LIDAR system beams light out and then precisely monitors the timing of reflections to map and track objects within its detection range. Unlike a camera that captures a two-dimensional rendition of three-dimensional scenes, a LIDAR system essentially captures full-fledged three-dimensional reality.

The basic technology already is out there-LIDAR allowed many robots at the DARPA Robotics Challenge to "see" and it enables autonomous vehicles to sense obstacles in their surroundings, for example-but those systems are too big, heavy and expensive for widespread use.

The range of applications for compact LIDAR systems that can provide real-time data on even subtly changing positions and velocities of nearby objects is enormous. One of the most coveted applications that could emerge from the envisioned program, which could extend for five years with up to $58 million in funding, is foliage-penetrating imagers for spotting hidden threats-a breakthrough that could revolutionize situational awareness in contested areas.

"You would be able to fly a MOABB-enabled helicopter or drone low over a lush forest canopy and be able to effectively peel back the leaves and see a sniper or a tank underneath," Conway said.

"It could instantaneously give you the range and velocity of everything up to a football field's distance away with the resolution of a camera. And with accompanying visualization tools, he added, "you would feel like you are on the ground with nothing blocking your vision."

Other potential applications include collision avoidance systems for small unmanned aerial vehicles (UAVs) maneuvering in tight indoor spaces, precision motor control for robotic limbs and fingers, high-capacity light-based communications and data-transfer systems, and sophisticated gaming or training modules in which LIDARs would open up new worlds of immersive experience just as GPS and motion-sensing accelerometers have done in today's systems.

"Every machine that interacts with the 3D world-whether it is a manufacturing robot, UAV, car, or smartphone-could have a chip- or wafer-scale LIDAR on it," Conway said.

To get a sense of the technology challenge MOABB poses, picture stripping a telescope of its lenses, mirrors and the interior space in which images come into focus. Jettison the mechanical parts, too, including the dials, gears and motors for focusing and steering the instrument.

Now reconstitute all of the light-gathering and imaging roles these parts play in conventional telescopes in an array of 10,000 light-emitting and light-detecting semiconductor dots distributed on a disk about the size of a DVD. The result: performance equivalent to or better than today's LIDARS that rely on bulky, telescope-like detectors.

The first phase of the program calls for researchers to develop the fundamental devices that will underlie the new LIDAR concept: speck-sized light-emitting and light-detecting cells capable of being readily integrated into larger arrays using typical semiconductor manufacturing processes. Phase 2 and Phase 3 of the project call for the integration of these cells into a 1 cm2 array and a 10 cm2 array comprising upwards of 100 and 10,000 unit cells, respectively.

With an integration of digital, electronic, optical and radiofrequency elements on a variety of combined semiconductor materials, the final 10-cm aperture LIDAR surface has the potential to be the most complex electronic-photonic circuit ever constructed, according to an anticipated Broad Agency Announcement of the MOAAB project, to be published later this month on FedBizOpps.

As a first step on the way toward the new technology, DARPA will host a Proposers Day event at DARPA headquarters in Ballston, VA, on December 17, 2015, to provide potential proposers with detailed information on the objectives of the program. Details about the Proposers Day can be found in a Special Notice released last week.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Defense Advanced Research Projects Agency
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
NAVSEA awards Harris Corporation radar upgrade contract
Melbourne, Fla. (UPI) Dec 2, 2015
The U.S. Naval Sea Systems Command has awarded Harris Corporation a four-year contract to upgrade the Navy's long-range radar. The contract, valued at $113 million, includes an initial $39 million order and three one-year options, and will upgrade the AN/SPS-48E radars to the more advanced SPS-48G models. The newer models use a modernized solid-state transmitter, enhancing detection cap ... read more


TECH SPACE
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

TECH SPACE
Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

ExoMars prepares to leave Europe for launch site

TECH SPACE
Australia seeks 'ideas boom' with tax breaks, visa boosts

Orion's power system to be put to the test

The Ins and Outs of NASA's First Launch of SLS and Orion

Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

TECH SPACE
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

TECH SPACE
Getting Into the Flow on the ISS

Orbital to fly first space cargo mission since 2014 explosion

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

TECH SPACE
Aerojet Rocketdyne completes AJ60 solid booster for Atlas V launcher

DXL-2: Studying X-ray emissions in space

Arianespace selected to launch Azerspace-2/Intelsat 38 satellites

"Cyg"-nificant Science Launching to Space Station

TECH SPACE
What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

TECH SPACE
Seeking a new generation of light-based sensing systems

NAVSEA awards Harris Corporation radar upgrade contract

Aerojet Rocketdyne completes build of 3-D printed parts for Orion spacecraft

Conductor turned insulator amid disorder









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.