. | . |
What kinds of stars form rocky planets by Staff Writers Washington DC (SPX) Dec 04, 2015
As astronomers continue to find more and more planets around stars beyond our own Sun, they are trying to discover patterns and features that indicate what types of planets are likely to form around different kinds of stars. This will hopefully inform and make more efficient the ongoing planet hunting process, and also help us better understand our own Solar System's formation. When a star is young, it is surrounded by a rotating disk of gas and dust, from which its planets form. As such, it's expected that chemical composition of the star should in some way affect the compositions of the planets orbiting it. Indeed, previous research has demonstrated that gas giant planets preferentially form around iron-rich stars. But more recent results have started to suggest that smaller planets do not require such high iron content in their stars to form. New work from a team including Carnegie's Johanna Teske extended this idea by measuring a large suite of elements besides iron. They found that stars with Earth-sized rocky planets are overall chemically similar to those with Neptune-sized planets, and to stars with no planets, but not to stars with gas giant planets The team examined the abundance of 19 different elements found in seven stars that are orbited by at least one Earth-like rocky planet, all discovered by NASA's Kepler mission. Their work shows that small rocky planets like Earth do not preferentially form around stars rich in metallic elements such as iron and silicon. The result is surprising because iron and silicon are among the most abundant elements in rocky planets. Their findings are published by The Astrophysical Journal. "There has been much ongoing debate about the stellar conditions necessary for planet formation," said lead author Simon Schuler of the University of Tampa. "Our results support the theory that the formation of small, rocky planets can occur around stars with diverse elemental compositions." "This means that small, rocky planets may be even more commonplace than we previously thought," Teske added. The planetary-formation from the gas-and-dust disk surrounding a new star as described above has also raised the question of whether the process itself depletes stars of the elements that are concentrated in the planets. If so, this could be used to improve our planet-searching abilities, as looking specifically for stars that show signs of this kind of chemical depletion could narrow the hunt. However, none of the seven stars the team studied displayed this suggested depletion signature. "Finding small planets can be challenging, so it's a little disappointing that we don't have a clear pointer for finding their host stars," Teske said. She works with Carnegie's Paul Butler on one of the longest-running radial velocity planet searches, in which they are trying to find Earth-like planets. "However, at the same time our results are really exciting because they mean that small planets are very common and chemically diverse." Teske is presenting his findings at the Extreme Solar Systems III meeting, co-organized by the American Astronomical Society and Northwestern University's Center for Interdisciplinary Exploration and Research in Astronomy (CIERA).
Related Links Carnegie Institution Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |