. 24/7 Space News .
STELLAR CHEMISTRY
Scientists use photons as threads to weave novel forms of matter
by Staff Writers
Southampton UK (SPX) Aug 18, 2020

Schematic of the experimental setup.

New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

Positive and negative electric charges attract each other, forming atoms, molecules, and all that we usually refer as matter. However, negative charges repel each other, and in order to form atom-like bound objects some extra glue is needed to compensate this electrostatic repulsion and bind the particles together.

In this latest study, published in the journal Nature Physics, an international team, led by Professor Simone De Liberato from the School of Physics and Astronomy at the University of Southampton, demonstrated for the first time that photons, the particles which compose light, can be used to glue together negative charges, creating a novel form of matter they named a Photon Bound Exciton

Implementing a theoretical prediction published last year by the same team, Prof De Liberato and co-workers fabricated a nano-device, trapping electrons into nanoscopic wells. They started by showing that photons that struck the device with high enough energy extracted electrons from the wells, an expected manifestation of the photoelectric effect, whose discovery earned Einstein his 1921 Nobel prize.

Prof De Liberato and his team then enclosed the device between two gold mirrors, which trapped the photons and focussed the luminous energy close to the electrons, dramatically increasing the interaction between light and matter.

They observed that a negatively-charged electron kicked out by a photon then remains instead trapped in the well, bound to the other negatively-charged electrons in a novel electronic configuration stabilised by the photon.

This result demonstrates the possibility of engineering novel artificial atoms with designer electronic configurations, dramatically expanding the list of materials available for scientific and technological applications.

Explaining the significance of his team's discovery, Prof De Liberato said: "We demonstrated how to use light as a sort of subatomic ziptie, binding together electrons to create novel atom-like objects. Doing so we broadened the catalogue of materials available to design photonic devices. I look forward to see how the many colleagues working in photonics will exploit this extra leeway to engineer novel amazing devices."

Research Report: "Excitons bound by photon exchange"


Related Links
University Of Southampton
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
The nature of nuclear forces imprinted in photons
Cracow, Poland (SPX) Jun 26, 2020
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus. Vital for validating the modern theoretical calculations of the nuclear structure was the application of state-of-the-art gamma-ray detector systems and the newly developed technique for measurements of femtosecond lifetimes in exotic nuclei produced in heavy-ion deep ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

Roscosmos teases names of next year's ISS tourist group flight

Richard Branson space-bound in early 2021 says Virgin Galactic

STELLAR CHEMISTRY
Astronauts praise 'flawless' SpaceX capsule landing

Russia wants to return to Venus, build reusable rocket

SpaceX launches 10th Starlink batch

Spaceflight and Benchmark sign green propulsion deal for Sherpa launcher

STELLAR CHEMISTRY
NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

Lava tubes on Mars and the Moon are so wide they can host planetary bases

STELLAR CHEMISTRY
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

STELLAR CHEMISTRY
SES selects SpaceX for launch of new C-Band satellites

Hisdesat And XTAR Complete Transaction For XTAR-EUR Satellite

Amazon to invest $10 bn in space-based internet system

Latvia becomes ESA Associate Member State

STELLAR CHEMISTRY
'Fortnite' maker sues Apple over app restrictions

Digital content to total half Earth's mass by 2245

French firm thrusts Microsoft Flight Simulator to new take-off

Apple and Google pull 'Fortnite' from mobile app shops

STELLAR CHEMISTRY
Lava oceans may not explain the brightness of some hot super-Earths

Deep sea microbes dormant for 100 million years are hungry and ready to multiply

Surprising number of exoplanets could host life

As if space wasn't dangerous enough

STELLAR CHEMISTRY
Ammonia sparks unexpected, exotic lightning on Jupiter

NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.