. 24/7 Space News .
EXO WORLDS
Lava oceans may not explain the brightness of some hot super-Earths
by Jennifer Chu for MIT News
Boston MA (SPX) Aug 12, 2020

Molten lava in crucible placed under experimental setup. Setup includes a spectrometer (right) which measures the light from the lava at different wavelengths.

Arguably some of the weirdest, most extreme planets among the more than 4,000 exoplanets discovered to date are the hot super-Earths - rocky, flaming-hot worlds that zing so precariously close to their host stars that some of their surfaces are likely melted seas of molten lava.

These fiery worlds, about the size of Earth, are known more evocatively as "lava-ocean planets," and scientists have observed that a handful of these hot super-Earths are unusually bright, and in fact brighter than our own brilliant blue planet.

Exactly why these far-off fireballs are so bright is unclear, but new experimental evidence by scientists at MIT shows that the unexpected glow from these worlds is likely not due to either molten lava or cooled glass (i.e. rapidly solidified lava) on their surfaces.

The researchers came to this conclusion after interrogating the problem in a refreshingly direct way: melting rocks in a furnace and measuring the brightness of the resulting lava and cooled glass, which they then used to calculate the brightness of regions of a planet covered in molten or solidified material. Their results revealed that lava and glass, at least as a product of the materials they melted in the lab, are not reflective enough to explain the observed brightness of certain lava-ocean planets.

Their findings suggest that hot super-Earths may have other surprising features that contribute to their brightness, such as metal-rich atmospheres and highly reflective clouds.

"We still have so much to understand about these lava-ocean planets," says Zahra Essack, a graduate student in MIT's Department of Earth, Atmospheric, and Planetary Sciences. "We thought of them as just glowing balls of rock, but these planets may have complex systems of surface and atmospheric processes that are quite exotic, and not anything we've ever seen before."

Essack is the first author of a study detailing the team's results, which appears in The Astrophysical Journal. Her co-authors are former MIT postdoc Mihkel Pajusalu, who was instrumental in the experiment's initial setup, and Sara Seager, the Class of 1941 Professor of Planetary Science, with appointments in the departments of Physics and Aeronautics and Astronautics.

More than charcoal balls
Hot super-Earths are between one and 10 times the mass of Earth, and have extremely short orbital periods, circling their host star in just 10 days or less. Scientists have expected that these lava worlds would be so close to their host star that any appreciable atmosphere and clouds would be stripped away. Their surfaces as a result would be at least 850 kelvins, or 1,070 degrees Fahrenheit - hot enough to cover the surface in oceans of molten rock.

Scientists have previously discovered a handful of super-Earths with unexpectedly high albedos, or brightnesses, in which they reflected between 40 and 50 percent of the light from their star. In comparison, the Earth's albedo, with all of its reflective surfaces and clouds, is only around 30 percent.

"You'd expect these lava planets to be sort of charcoal balls orbiting in space - very dark, not very bright at all," Essack says. "So what makes them so bright?"

One idea has been that the lava itself may be the main source of the planets' luminosity, though there had never been any proof, either in observations or experiments.

"So being MIT people, we decided, ok, we should make some lava and see if it's bright or not," Essack says.

Making lava
To first make lava, the team needed a furnace that could reach temperatures high enough to melt basalt and feldspar, the two rock types that they chose for their experiments, as they are well-characterized material that are common on Earth.

As it turns out, they initially didn't have to look farther than the foundry at MIT, a space within the Department of Materials Science and Engineering, where trained metallurgists help students and researchers melt materials in the foundry's furnace for research and class projects.

Essack brought samples of feldspar to the foundry, where metallurgists determined the type of crucible in which to place them, and the temperatures at which they needed to be heated.

"They drop it in the furnace, let the rocks melt, take it out, and then the whole place turns into a furnace itself - it's very hot," Essack says. "And it was an incredible experience to stand next to this bright glowing lava, feeling that heat."

However, the experiment quickly ran up against an obstacle: The lava, once it was pulled from the furnace, almost instantly cooled into a smooth, glassy material. The process occurred so quickly that Essack wasn't able to measure the lava's reflectivity while still molten.

So she took the cooled feldspar glass to a spectroscopy lab she designed and implemented on campus to measure its reflectance, by shining a light on the glass from different angles and measuring the amount of light reflecting back from the surface. She repeated these experiments for cooled basalt glass, samples of which were donated by colleagues at Syracuse University who run the Lava Project. Seager visited them a few years ago for a preliminary version of the experiment, and at that time collected basalt samples now used for Essack's experiments.

"They melted a huge bunch of basalt and poured it down a slope, and they chipped it up for us," Seager says.

After measuring the brightness of cooled basalt and feldspar glass, Essack looked through the literature to find reflectivity measurements of molten silicates, which are a major component of lava on Earth. She used these measurements as a reference to calculate how bright the initial lava from the basalt and feldspar glass would be. She then estimated the brightness of a hot super-Earth covered either entirely in lava or cooled glass, or combinations of the two materials.

In the end, she found that, no matter the combination of surface materials, the albedo of a lava-ocean planet would be no more than about 10 percent - pretty dark compared with the 40 to 50 percent albedo observed for some hot super-Earths.

"This is quite dark compared to Earth, and not enough to explain the brightness of the planets we were interested in," Essack says.

This realization has narrowed the search range for interpreting observations, and directs future studies to consider other exotic possibilities, such as the presence of atmospheres rich in reflective metals.

"We're not 100 percent sure what these planets are made of, so we're narrowing the parameter space and guiding future studies toward all these other potential options," Essack says.

This research was funded, in part, by NASA's TESS mission and, in part, by the MIT Presidential Fellowship.


Related Links
MIT News Office
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Surprisingly dense exoplanet challenges planet formation theories
Washington DC (SPX) Aug 07, 2020
New detailed observations with NSF's NOIRLab facilities reveal a young exoplanet, orbiting a young star in the Hyades cluster, that is unusually dense for its size and age. Weighing in at 25 Earth-masses, and slightly smaller than Neptune, this exoplanet's existence is at odds with the predictions of leading planet formation theories. New observations of the exoplanet, known as K2-25b, made with the WIYN 0.9-meter Telescope at Kitt Peak National Observatory (KPNO), a Program of NSF's NOIRLab, the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

Roscosmos teases names of next year's ISS tourist group flight

Richard Branson space-bound in early 2021 says Virgin Galactic

EXO WORLDS
Russia wants to return to Venus, build reusable rocket

NASA completes crucial test of moon rocket's propulsion system

ABL Space Systems begins RS1 stage testing and reaches $90mm in funding

New footage of US hypersonic glide body impacting target unveiled by the Army

EXO WORLDS
NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

Lava tubes on Mars and the Moon are so wide they can host planetary bases

EXO WORLDS
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

EXO WORLDS
Exolaunch awarded contracts to deliver Swarm Satellites into orbit on Falcon 9

SES selects SpaceX for launch of new C-Band satellites

SES selects ULA to launch two C-Band satellites to accelerate C-Band clearing

Hisdesat And XTAR Complete Transaction For XTAR-EUR Satellite

EXO WORLDS
First laser detection of space debris in daylight

Scientists find way to track space junk in daylight

Transforming e-waste into a strong, protective coating for metal

Return of the LIDAR

EXO WORLDS
Hubble uses Earth as a Proxy for identifying oxygen on exoplanets

VLBA finds planet orbiting small, cool star

Surprisingly dense exoplanet challenges planet formation theories

Deep sea microbes dormant for 100 million years are hungry and ready to multiply

EXO WORLDS
Ammonia sparks unexpected, exotic lightning on Jupiter

Shallow Lightning and Mushballs reveal ammonia to Juno scientists

NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.