. | . |
As if space wasn't dangerous enough by Vikrant Minhas | PhD candidate, University of Adelaide Adelaide, Australia (SPX) Jul 28, 2020
China has launched its Tianwen-1 mission to Mars. A rocket holding an orbiter, lander and rover took flight from the country's Hainan province yesterday, with hopes to deploy the rover on Mars's surface by early next year. Similarly, the launch of the Emirates Mars Mission on Sunday marked the Arab world's foray into interplanetary space travel. And on July 30, we expect to see NASA's Mars Perseverance rover finally take off from Florida. For many nations and their people, space is becoming the ultimate frontier. But although we're gaining the ability to travel smarter and faster into space, much remains unknown about its effects on biological substances, including us. While the possibilities of space exploration seem endless, so are its dangers. And one particular danger comes from the smallest life forms on Earth: bacteria. Bacteria live within us and all around us. So whether we like it or not, these microscopic organisms tag along wherever we go - including into space. Just as space's unique environment has an impact on us, so too does it impact bacteria.
We don't yet know the gravity of the problem In space, where there is minimal gravity, sedimentation (when solids in a liquid settle to the bottom), convection (the transfer of heat energy) and buoyancy (the force that makes certain objects float) are minimised. Similarly, forces such as liquid surface tension and capillary forces (when a liquid flows to fill a narrow space) become more intense. It's not yet fully understood how such changes impact lifeforms.
How bacteria become more deadly in space In space, bacteria seem to become more resistant to antibiotics and more lethal. They also stay this way for a short time after returning to Earth, compared with bacteria that never left Earth. Adding to that, bacteria also seem to mutate quicker in space. However, these mutations are predominately for the bacteria to adapt to the new environment - not to become super deadly. More research is needed to examine whether such adaptations do, in fact, allow the bacteria to cause more disease.
Bacterial team work is bad news for space stations Biofilms are densely-packed cell colonies that produce a matrix of polymeric substances allowing bacteria to stick to each other, and to stationary surfaces. Biofilms increase bacteria's resistance to antibiotics, promote their survival and improve their ability to cause infection. We have seen biofilms grow and attach to equipment on space stations, causing it to biodegrade. For example, biofilms have affected the Mir space station's navigation window, air conditioning, oxygen electrolysis block, water recycling unit and thermal control system. The prolonged exposure of such equipment to biofilms can lead to malfunction, which can have devastating effects. Another affect of microgravity on bacteria involves their structural distortion. Certain bacteria have shown reductions in cell size and increases in cell numbers when grown in microgravity. In the case of the former, bacterial cells with smaller surface area have fewer molecule-cell interactions, and this reduces the effectiveness of antibiotics against them. Moreover, the absence of effects produced by gravity, such as sedimentation and buoyancy, could alter the way bacteria take in nutrients or drugs intended to attack them. This could result in the increased drug resistance and infectiousness of bacteria in space. All of this has serious implications, especially when it comes to long-haul space flights where gravity would not be present. Experiencing a bacterial infection that cannot be treated in these circumstances would be catastrophic.
The benefits of performing research in space For example, molecular crystals in space's microgravity grow much larger and more symmetrically than on Earth. Having more uniform crystals allows the formulation of more effective drugs and treatments to combat various diseases including cancers and Parkinson's disease. Also, the crystallisation of molecules helps determine their precise structures. Many molecules that cannot be crystallised on Earth can be in space. So, the structure of such molecules could be determined with the help of space research. This, too, would aid the development of higher quality drugs. Optical fibre cables can also be made to a much better standard in space, due to the optimal formation of crystals. This greatly increases data transmission capacity, making networking and telecommunications faster. As humans spend more time in space, an environment riddled with known and unknown dangers, further research will help us thoroughly examine the risks - and the potential benefits - of space's unique environment.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |