. 24/7 Space News .
EXO WORLDS
Scientists shed more light on molecules linked to life on other planets
by Lachlan Gilbert UNSW News
Sydney, Australia (SPX) Apr 11, 2021

illustration only

To confirm life on other planets, we need to detect far more molecules in their atmospheres than we currently do to rule out non-biological chemical processes.

The search for life on other planets has received a major boost after scientists revealed the spectral signatures of almost 1000 atmospheric molecules that may be involved in the production or consumption of phosphine, a study led by UNSW Sydney revealed.

Scientists have long conjectured that phosphine - a chemical compound made of one phosphorous atom surrounded by three hydrogen atoms (PH3) - may indicate evidence of life if found in the atmospheres of small rocky planets like our own, where it is produced by the biological activity of bacteria.

So when an international team of scientists last year claimed to have detected phosphine in the atmosphere of Venus, it raised the tantalising prospect of the first evidence of life on another planet - albeit the primitive, single-celled variety.

But not everyone was convinced, with some scientists questioning whether the phosphine in Venus's atmosphere was really produced by biological activity, or whether phosphine was detected at all.

Now an international team, led by UNSW Sydney scientists, has made a key contribution to this and any future searches for life on other planets by demonstrating how an initial detection of a potential biosignature must be followed by searches for related molecules.

In a paper published in the journal Frontiers in Astronomy and Space Sciences, they described how the team used computer algorithms to produce a database of approximate infrared spectral barcodes for 958 molecular species containing phosphorous.

Look and learn
As UNSW School of Chemistry's Dr Laura McKemmish explains, when scientists look for evidence of life on other planets, they don't need to go into space, they can simply point a telescope at the planet in question.

"To identify life on a planet, we need spectral data," she says.

"With the right spectral data, light from a planet can tell you what molecules are in the planet's atmosphere."

Phosphorus is an essential element for life, yet up until now, she says, astronomers could only look for one polyatomic phosphorus-containing molecule, phosphine.

"Phosphine is a very promising biosignature because it is only produced in tiny concentrations by natural processes. However, if we can't trace how it is produced or consumed, we can't answer the question of whether it is unusual chemistry or little green men who are producing phosphine on a planet," says Dr McKemmish.

To provide insight, Dr McKemmish brought together a large interdisciplinary team to understand how phosphorus behaves chemically, biologically and geologically and ask how this can be investigated remotely through atmospheric molecules alone.

"What was great about this study is that it brought together scientists from disparate fields - chemistry, biology, geology - to address these fundamental questions around the search for life elsewhere that one field alone could not answer," says astrobiologist and co-author on the study, Associate Professor Brendan Burns.

Dr McKemmish continues: "At the start, we looked for which phosphorous-bearing molecules - what we called P-molecules - are most important in atmospheres but it turns out very little is known. So we decided to look at a large number of P-molecules that could be found in the gas-phase which would otherwise go undetected by telescopes sensitive to infrared light."

Barcode data for new molecular species are normally produced for one molecule at a time, Dr McKemmish says, a process that often takes years. But the team involved in this research used what she calls "high-throughput computational quantum chemistry" to predict the spectra of 958 molecules within only a couple of weeks.

"Though this new dataset doesn't yet have the accuracy to enable new detections, it can help prevent misassignments by highlighting the potential for multiple molecular species having similar spectral barcodes - for example, at low resolution with some telescopes, water and alcohol could be indistinguishable.

"The data can also be used to rank how easy a molecule is to detect. For example, counter-intuitively, alien astronomers looking at Earth would find it much easier to detect 0.04% CO2 in our atmosphere than the 20% O2. This is because CO2 absorbs light much more strongly than O2 - this is actually what causes the greenhouse effect on Earth."

Life on exoplanets
Regardless of the outcomes from the debate about the existence of phosphine in Venus's atmosphere and the potential signs of life on the planet, this recent addition to the knowledge of what can be detected using telescopes will be important in the detection of potential signs of life on exoplanets - planets in other solar systems.

"The only way we're going to be able to look at exoplanets and see whether there's life there is to use spectral data collected by telescopes - that is our one and only tool," says Dr McKemmish.

"Our paper provides a novel scientific approach to following up the detection of potential biosignatures and has relevance to the study of astrochemistry within and outside the Solar System," says Dr McKemmish. "Further studies will rapidly improve the accuracy of the data and expand the range of molecules considered, paving the way for its use in future detections and identifications of molecules."

Fellow co-author and CSIRO astronomer Dr Chenoa Tremblay says the team's contribution will be beneficial as more powerful telescopes come online in the near future.

"This information has come at a critical time in astronomy," she says.

"A new infrared telescope called the James Web Space Telescope is due to launch later this year and it will be far more sensitive and cover more wavelengths than its predecessors like the Herschel Space Observatory. We will need this information at a very rapid rate to identify new molecules in the data."

She says although the team's work was focused on the vibrational motions of molecules detected with telescopes sensitive to infrared light, they are currently working to extend the technique to the radio wavelengths as well.

"This will be important for current and new telescopes like the upcoming Square Kilometre Array to be built in Western Australia."

Research paper


Related Links
UNSW Sydney
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Probing for life in the icy crusts of ocean worlds
Pasadena CA (JPL) Apr 08, 2021
Long before NASA's Perseverance rover touched down on the Red Planet on Feb. 18, one of its highest-level mission goals was already established: to seek out signs of ancient life on the Martian surface. In fact, the techniques used by one of the science instruments aboard the rover could have applications on Saturn's moons Enceladus and Titan as well Jupiter's moon Europa. "Perseverance is going to look for a shopping list of minerals, organics, and other chemical compounds that may reveal microbi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Biden proposes 6.3% boost for NASA in budget proposal

Liftoff! Pioneers of space

All aboard! Next stop space...

40th anniversary of first space shuttle orbital mission a bittersweet occasion

EXO WORLDS
NASA certifies new launch control system for Artemis I

DLR is creating the rocket fuels of the future

Ariane 6 pre-flight 'plumbing' tests

Roscosmos has lost several contracts for satellite launches due to 'mean' US sanctions

EXO WORLDS
Perseverance's take selfie with Ingenuity

CO2 mitigation on Earth and magnesium civilization on Mars

Mars didn't dry up in one go

NASA delays Mars copter flight for tech check

EXO WORLDS
Chinese rocket for space station mission arrives at launch site

Ningbo to build $3.05b rocket launchpad site

China advances space cooperation in 2020: blue book

China selects astronauts for space station program

EXO WORLDS
SpaceX launches 60 Starlink communications satellites

UK space firm In-Space Missions Limited Announces Major Expansion And Job Creation Plans

SpaceFund Venture Capital Announces First Close of Second Fund

Nine global space startups to join Australia's first space dedicated incubator program

EXO WORLDS
Northrop Grumman and Intelsat make history with docking of 2nd Mission Extension Vehicle

New laser to help clear the sky of space debris

US restricts trade with Chinese supercomputers centers

German Space Agency Selects Lockheed Martin iSpace System For Space Situational Awareness

EXO WORLDS
Long-awaited review reveals journey of water from interstellar clouds to habitable worlds

SKF bearings help Mars Rover collect rock and regolith samples on the planet's surface

First transiting exoplanet's 'chemical fingerprint' reveals its distant birthplace

Scientists shed more light on molecules linked to life on other planets

EXO WORLDS
New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered

SwRI scientists discover a new auroral feature on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.