. | . |
Researchers use quantum-inspired approach to increase lidar resolution by Staff Writers Glasgow UK (SPX) Jul 14, 2022
Researchers have shown that a quantum-inspired technique can be used to perform lidar imaging with a much higher depth resolution than is possible with conventional approaches. Lidar, which uses laser pulses to acquire 3D information about a scene or object, is usually best suited for imaging large objects such as topographical features or built structures due to its limited depth resolution. "Although lidar can be used to image the overall shape of a person, it typically doesn't capture finer details such as facial features," said research team leader Ashley Lyons from the University of Glasgow in the United Kingdom. "By adding extra depth resolution, our approach could capture enough detail to not only see facial features but even someone's fingerprints." In the Optica Publishing Group journal Optics Express, Lyons and first author Robbie Murray describe the new technique, which they call imaging two-photon interference lidar. They show that it can distinguish reflective surfaces less than 2 millimeters apart and create high-resolution 3D images with micron-scale resolution. "This work could lead to much higher resolution 3D imaging than is possible now, which could be useful for facial recognition and tracking applications that involve small features," said Lyons. "For practical use, conventional lidar could be used to get a rough idea of where an object might be and then the object could be carefully measured with our method."
Using classically entangled light "With quantum entangled photons, only so many photon pairs per unit time can be generated before the setup becomes very technically demanding," said Lyons. "These problems don't exist with classical light, and it is possible to get around the high losses by turning up the laser power." When two identical photons meet at a beam splitter at the same time they will always stick together, or become entangled, and leave in the same direction. Classical light shows the same behavior but to a lesser degree - most of the time classical photons go in the same direction. The researchers used this property of classical light to very precisely time the arrival of one photon by looking at when two photons simultaneously arrive at detectors.
Enhancing depth resolution The researchers demonstrated the high depth resolution of two-photon interference lidar by using it to detect the two reflective surfaces of a piece of glass about 2 millimeters thick. Traditional lidar wouldn't be able to distinguish these two surfaces, but the researchers were able to clearly measure the two surfaces. They also used the new method to create a detailed 3D map of a 20-pence coin with 7-micron depth resolution. This shows that the method could capture the level of detail necessary to differentiate key facial features or other differences between people. Two-photon interference lidar also works very well at the single-photon level, which could enhance more complex imaging approaches used for non-line-of-sight imaging or imaging through highly scattering media. Currently, acquiring the images takes a long time because it requires scanning across all three spatial dimensions. The researchers are working to make this process faster by reducing the amount of scanning necessary to acquire 3D information.
Research Report:Two-Photon Interference LiDAR Imaging
ICEYE expands its business to offer complete satellite missions for customers Helsinki, Finland (SPX) Jun 29, 2022 ICEYE, an Earth observation company operating the world's largest synthetic-aperture radar (SAR) satellite constellation, has announced the establishment of a new line of business focused solely on delivering fully operational satellite missions to customers looking for their own orbital SAR capabilities. Governments and large multinational corporations are able to purchase their own radar imaging satellites from ICEYE and operate them independently, or arrange ICEYE to manage the spacecraft exclu ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |