. | . |
Researchers remotely control sequence in which 2-D sheets fold into 3-D structures by Staff Writers Raleigh NC (SPX) Mar 07, 2017
Inspired by origami, North Carolina State University researchers have found a way to remotely control the order in which a two-dimensional (2-D) sheet folds itself into a three-dimensional (3-D) structure. "A longstanding challenge in the field has been finding a way to control the sequence in which a 2-D sheet will fold itself into a 3-D object," says Michael Dickey, a professor of chemical and biomolecular engineering at NC State and co-corresponding author of a paper describing the work. "And as anyone who has done origami - or folded their laundry - can tell you, the order in which you make the folds can be extremely important." "The sequence of folding is important in life as well as in technology," says co-corresponding author Jan Genzer, the S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State. "On small length scales, sequential folding via molecular machinery enables DNA to pack efficiently into chromosomes and assists proteins to adopt a functional conformation. On large length scales, sequential folding via motors helps solar panels in satellites and space shuttles unfold in space. The advance of the current work is to induce materials to fold sequentially using only light." Specifically, the researchers have developed a technique to design and fabricate 2-D materials that can be controlled remotely in order to trigger any of the given folds to take place, in any order. Dickey and Genzer were early leaders in the field of self-folding 3-D structures. In their landmark 2011 paper, the researchers outlined a technique in which a pre-stressed plastic sheet was run through a conventional inkjet printer to print bold black lines on the material. The material was then cut into a desired pattern and placed under an infrared light, such as a heat lamp. The printed lines absorbed more energy than the rest of the material, causing the plastic to contract - creating a hinge that folded the sheets into 3-D shapes. By varying the width of the printed lines, or hinges, the researchers were able to change how far - and how quickly - each hinge folds. The technique is compatible with commercial printing techniques, such as screen printing, roll-to-roll printing, and inkjet printing, that are inexpensive and high-throughput but inherently 2-D. The new advance uses essentially the same technique, but takes advantage of the fact that different colors of ink absorb different wavelengths, or colors, of light. "By printing the hinges in different colors, we can control the order of the folds by altering the wavelengths of light that shines on the 2-D sheet," Genzer says. For example, if one hinge is printed in yellow and another hinge is printed in blue, the researchers can make the yellow hinge fold by exposing it to blue light. The blue hinge won't fold, because blue ink doesn't absorb blue light. The researchers can then make the blue hinge fold by exposing the sheet to red light. In addition, by manipulating the colors of ink, the researchers were also able to get hinges to fold sequentially when exposed to a single wavelength of light. This is possible because some colors will absorb a given wavelength of light more efficiently than others. A video of the sequential folding techniques in action can be seen here. "This is a proof-of-concept paper, but it opens the door to a range of potential applications using a simple and inexpensive process," Dickey says. "Ultimately, people are interested in self-assembling structures for multiple reasons, from shipping things in a flat package and having them assemble on site to having devices self-assemble in 'clean' environments for medical or electronic applications." The paper, "Sequential Self-folding of Polymer Sheets," is published in the AAAS journal Science Advances. Lead author of the paper is Ying Liu, a postdoctoral researcher at NC State. The paper was co-authored by Brandi Shaw, who participated in the work while an undergraduate at NC State. The work was done with support from EFRI program through the National Science Foundation, under grant number 1240438.
Washington DC (SPX) Feb 28, 2017 Researchers have developed a completely new type of display that creates 3D images by using a laser to form tiny bubbles inside a liquid "screen." Instead of rendering a 3D scene on a flat surface, the display itself is three-dimensional, a property known as volumetric. This allows viewers to see a 3D image in the columnar display from all angles without any 3D glasses or headsets. In The ... read more Related Links North Carolina State University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |