. | . |
The missing link in how planets form by Staff Writers Melbourne, Australia (SPX) Mar 01, 2017
A French-UK-Australian team of astronomers may have discovered in planet formation that explains how initial dust develops into planetary systems. Using numerical simulations and analytical calculations, researchers from Swinburne University of Technology, Lyon University and St. Andrews University have developed a theory that explains the growth of solid particles from pebbles to planetesimals (asteroid-like bodies). Their simulations show the formation of 'dust traps' where pebble-sized fragments collect and stick together, to grow into the building blocks of planets. Planetary systems, such as our solar system, began life as a disk of gas and dust grains around a young star. The processes that convert these tiny grains into larger aggregates a few centimetres in size, and the mechanism that converts kilometre-sized planetesimals into planetary cores are both reasonably well understood. But the crucial intermediate stage, taking pebbles and joining them together into objects the size of asteroids, is less clear. "There are two main barriers to pebbles becoming planetesimals," says Swinburne Dean of Science, Professor Sarah Maddison. "Firstly the drag of gas on dust grains in a disk makes them drift rapidly towards the central star, where they are destroyed, leaving no material to form planets. "The second challenge is that growing grains can be broken up in high-speed collisions into a large number of smaller pieces, thus reversing the aggregation process." The only locations in planet forming disks where these problems can be overcome are in so-called 'dust traps.' In these high-pressure regions, the drift motion slows, allowing dust grains to accumulate. With their reduced speed, the grains can also avoid fragmentation when they collide. Until now, astronomers thought that dust traps could only exist in very specific environments, but the computer simulations run by the team indicate that they are very common. "What we have been able to identify is the key role of the drag of dust on the gas," Professor Maddison says. "Often in astronomy, the gas tells the dust how to move, but when there is a lot of dust, the dust tells the gas how to move. This effect, known as aerodynamic drag back-reaction, is usually negligible. However, the effect becomes important in dust rich environments, like those found in the planet formation process." The effect of the back-reaction is to slow the inward drift of the grains, which gives them time to grow in size. Once large enough, the grains are their own masters, and the gas can no longer govern their motion. Under the influence of this back-reaction, the gas is pushed outwards to form a high-pressure region: the dust trap. These spontaneous traps then concentrate the grains coming from the outer disk regions, creating a very dense ring of solids, and giving a helping hand to the formation of planets.
Research Report: "Self-Induced Dust Traps: Overcoming Planet Formation Barriers," J.-F. Gonzalez, G. Laibe and S. T. Maddison, 2017 Feb. 28, Monthly Notices of the Royal Astronomical Society
Sheffield UK (SPX) Feb 27, 2017 Evidence of planetary debris surrounding a double sun in a Star Wars-like system has been found by a team of researchers including scientists from the University of Sheffield. The study, published in the journal Nature Astronomy, has found the remains of shattered asteroids orbiting a double sun consisting of a white dwarf star and a brown dwarf star roughly 1,000 light-years away in a sys ... read more Related Links Swinburne University Of Technology Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |