. 24/7 Space News .
TECH SPACE
Researchers develop nanoparticle films for high-density data storage
by Staff Writers
Washington DC (SPX) Apr 04, 2018

Researchers created a nanofilm that can store data holographically and is environmentally stable. Here, Shencheng Fu carries out experiments with the new film.

As we generate more and more data, the need for high-density data storage that remains stable over time is becoming critical. New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. The new technology could one day enable tiny wearable devices that capture and store 3-D images of objects or people.

"In the future, these new films could be incorporated into a tiny storage chip that records 3-D color information that could later be viewed as a 3-D hologram with realistic detail," said Shencheng Fu, who led researchers from Northeast Normal University in China who developed the new films. "Because the storage medium is environmentally stable, the device could be used outside or even brought into the harsh radiation conditions of outer space."

In the journal Optical Materials Express, the researchers detail their fabrication of the new films and demonstrate the technology's ability to be used for an environmentally-stable holographic storage system. The films not only hold large amounts of data, but that data can also be retrieved at speeds up to 1 GB per second, which is about twenty times the reading speed of today's flash memory.

Storing more data in less space
The new films are designed for holographic data storage, a technique that uses lasers to create and read a 3-D holographic recreation of data in a material. Because it can record and read millions of bits at once, holographic data storage is much faster than optical and magnetic approaches typically used for data storage today, which record and read individual bits one at a time.

Holographic approaches are also inherently high-density because they record information throughout the 3-D volume of the material, not just on the surface, and can record multiple images in the same area using light at different angles or consisting of different colors.

Recently, researchers have been experimenting with using metal-semiconductor nanocomposites as a medium for storing nanoscale holograms with high spatial resolution. Porous films made of the semiconductor titania and silver nanoparticles are promising for this application because they change color when exposed to various wavelengths, or colors, of laser light and because a set of 3-D images can be recorded at the focus area of laser beam using a single step.

Although the films could be used for multiwavelength holographic data storage, exposure to UV light has been shown to erase the data, making the films unstable for long-term information storage.

Recording a holographic image into titania-silver films involves using a laser to convert the silver particles into silver cations, which have a positive charge due to extra electrons.

"We noticed that UV light could erase the data because it caused electrons to transfer from the semiconductor film to the metal nanoparticles, inducing the same photo transformation as the laser," said Fu. "Introducing electron-accepting molecules into the system causes some of the electrons to flow from the semiconductor to these molecules, weakening the ability of UV light to erase the data and creating an environmentally stable high-density data storage medium."

Changing the electron flow
For the new films, the researchers used electron-accepting molecules that measured only 1 to 2 nanometers to disrupt the electron flow from the semiconductor to the metal nanoparticles.

They fabricated semiconductor films with a honeycomb nanopore structure that allowed the nanoparticles, electron-accepting molecules and the semiconductor to all interface with each other. The ultrasmall size of the electron-accepting molecules allowed them to attach inside the pores without affecting the pore structure. The final films were just 620 nanometers thick.

The researchers tested their new films and found that holograms can be written into them efficiently and with high stability even in the presence of UV light. The researchers also demonstrated that using the electron-acceptors to change the electron flow formed multiple electron transferring paths, making the material respond faster to the laser light and greatly accelerating the speed of data writing.

"Particles made from noble metals such as silver are typically viewed as a slow-response media for optical storage," said Fu. "We show that using a new electron transport flow improves the optical response speed of the particles while still maintaining the particle's other advantages for information storage."

The researchers plan to test the environmental stability of the new films by performing outdoor tests. They also point out that real-life application of the films would require the development of high efficiency 3-D image reconstruction techniques and methods for color presentation for displaying or reading the stored data.

Research Report: S. Liu, S. Fu, X. Zhang, X. Wang, L. Kang, X. Han, X. Chen, J. Wu, Y. Liu, "UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors," Opt. Mater. Express Volume 8, Issue 5, 1143-1153 (2018). DOI: 10.1364/OME.8.001143.


Related Links
The Optical Society
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Pressing a button is more challenging than appears
Helsinki, Finland (SPX) Mar 28, 2018
Pressing a button appears effortless and one easily dismisses how challenging it is. Researchers at Aalto University, Finland, and KAIST, South Korea, created detailed simulations of button-pressing with the goal of producing human-like presses. "This research was triggered by admiration of our remarkable capability to adapt button-pressing", explains Professor Antti Oulasvirta at Aalto University. "We push a button on a remote controller differently than a piano key. The press of a skilled ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Coming down in flames: Fiery endings for spacecraft

Inspired by ASU NASA mission, students create space art

Airbus delivers new life support system for the ISS

60 years in orbit for 'grapefruit satellite' - the oldest human object in space

TECH SPACE
Chinese scientists developing bee-inspired aerospace vehicle

3D printing rocket engines in SPAIN

Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

TECH SPACE
Sol 2000: Roving for 2000 Martian Days

Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

Instruments for next NASA mission to Mars being tested under Germany's Black Forest

TECH SPACE
China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Chang'e-4 Lunar Probe will Reach the Far Side of the Moon

China to launch Long March-5B rocket next year

TECH SPACE
Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

TECH SPACE
Microsoft shakes up ranks to shoot for the cloud

Oracle's big-money case against Google gets new life

Finding order in disorder demonstrates a new state of matter

Pressing a button is more challenging than appears

TECH SPACE
Characterization of a water world in a multi-exoplanetary system

Hot, metallic Mercury-like exoplanet discovered 340 light-years from Earth

New study shows what interstellar visitor Oumuamua can teach us

UK team to lead European mission to study new planets

TECH SPACE
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.