. 24/7 Space News .
TECH SPACE
Pressing a button is more challenging than appears
by Staff Writers
Helsinki, Finland (SPX) Mar 28, 2018

Both physical and touch buttons provide clear tactile signals from the impact of the tip with the button floor. However, with the physical button this signal is more pronounced and longer. (file image)

Pressing a button appears effortless and one easily dismisses how challenging it is. Researchers at Aalto University, Finland, and KAIST, South Korea, created detailed simulations of button-pressing with the goal of producing human-like presses.

"This research was triggered by admiration of our remarkable capability to adapt button-pressing", explains Professor Antti Oulasvirta at Aalto University.

"We push a button on a remote controller differently than a piano key. The press of a skilled user is surprisingly elegant when looked at terms of timing, reliability, and energy use. We successfully press buttons without ever knowing the inner workings of a button. It is essentially a black box to our motor system. On the other hand, we also fail to activate buttons, and some buttons are known to be worse than others."

Previous research has shown that touchbuttons are worse than push-buttons, but there has not been adequate theoretical explanation.

"In the past, there has been very little attention to buttons, although we use them all the time" says Dr. Sunjun Kim. The new theory and simulations can be used to design better buttons.

"One exciting implication of the theory is that activating the button at the moment when the sensation is strongest will help users better rhythm their keypresses."

To test this hypothesis, the researchers created a new method for changing the way buttons are activated. The technique is called Impact Activation. Instead of activating the button at first contact, it activates it when the button cap or finger hits the floor with maximum impact.

The technique was 94% more precise in rapid tapping than the regular activation method for a push-button (Cherry MX switch) and 37% than a regular touchscreen button using a capacitive touch sensor.

The technique can be easily deployed in touchscreens. However, regular physical keyboards do not offer the required sensing capability, although special products exist (e.g., the Wooting keyboard) on which it can be implemented.

The technique could help gamers and musicians in tasks that require speed and rhythm.

100 milliseconds
The simulations shed new light on what happens during a button press. One problem the brain must overcome is that muscles do not activate as perfectly as we will, but every press is slightly different.

Moreover, a button press is very fast, occurring within 100 milliseconds, and is too fast for correcting movement. The key to understanding button-pressing is therefore to understand how the brain adapts based on the limited sensations that are the residue of the brief press event.

The researchers argue that the key capability of the brain is a probabilistic model: The brain learns a model that allows it to predict a suitable motor command for a button. If a press fails, it can pick a very good alternative and try it out.

"Without this ability, we would have to learn to use every button like it was new," tells Professor Byungjoo Lee from KAIST. After successfully activating the button, the brain can tune the motor command to be more precise, use less energy and to avoid stress or pain. "These factors together, with practice, produce the fast, minimum-effort, elegant touch people are able to perform."

The brain uses probabilistic models also to extract information optimally from the sensations that arise when the finger moves and its tip touches the button. It "enriches" the ephemeral sensations optimally based on prior experience to estimate the time the button was impacted. For example, tactile sensation from the tip of the finger a better predictor for button activation than proprioception (angle position) and visual feedback.

Best performance is achieved when all sensations are considered together. To adapt, the brain must fuse their information using prior experiences. Professor Lee explains: "We believe that the brain picks up these skills over repeated button pressings that start already as a child. What appears easy for us now has been acquired over years."

The researchers also used the simulation to explain differences among physical and touchscreen-based button types. Both physical and touch buttons provide clear tactile signals from the impact of the tip with the button floor. However, with the physical button this signal is more pronounced and longer.

"Where the two button types also differ is the starting height of the finger, and this makes a difference," explains Prof. Lee. "When we pull up the finger from the touchscreen, it will end up at different height every time. Its down-press cannot be as accurately controlled in time as with a push-button where the finger can rest on top of the key cap."

Three scientific articles, "Neuromechanics of a Button Press", "Impact activation improves rapid button pressing", and "Moving target selection: A cue integration model", will be presented at the CHI Conference on Human Factors in Computing Systems in Montreal, Canada, in April 2018.


Related Links
Aalto University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
ORNL researchers design novel method for energy-efficient deep neural networks
Oak Ridge TN (SPX) Mar 16, 2018
An Oak Ridge National Laboratory method to improve the energy efficiency of scientific artificial intelligence is showing early promise in efforts to parse insights from volumes of cancer data. Researchers are realizing the potential of deep learning to rapidly advance science, but "training" the underlying neural networks with large volumes of data to tackle the task at hand can require large amounts of energy. These networks also require complex connectivity and enormous amounts of storage, both ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Airbus delivers new life support system for the ISS

China to become top patent filer within three years: UN

A Frommer's guide to the future of interplanetary travel

NASA science heading to space ranges from the upper atmosphere to microbes

TECH SPACE
Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

Air Force Chief of Staff: US 'On Track' to Replace Russian RD-180 Rocket Engine

Air Force awards launch contracts to SpaceX and ULA

TECH SPACE
Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

360 Video: Tour a Mars Robot Test Lab

Next NASA Mars Rover Reaches Key Manufacturing Milestone

TECH SPACE
China to launch Long March-5B rocket next year

China plans to develop a multipurpose, reusable space plane

China moving ahead with plans for next-generation X-ray observatory

China to launch Long March-5B rocket in 2019

TECH SPACE
Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

Iridium Certus Distribution Expands; Enables Globally 'Connected Vehicles', Assets and Teams

TECH SPACE
Researchers use 3-D printing to create metallic glass alloys

Diamond powers first continuous room-temperature solid-state maser

Predicting the Lifespan of Materials in Space

NASA Marshall advances 3-D printed rocket engine nozzle technology

TECH SPACE
Team discovers that wind moves microinvertebrates across desert

Yale's Expres Instrument ready to find the next Earth Analog

NASA's Kepler Spacecraft Nearing the End as Fuel Runs Low

Study sheds light on the genetic origins of the two sexes

TECH SPACE
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.