. | . |
Finding order in disorder demonstrates a new state of matter by Staff Writers Los Alamos NM (SPX) Apr 03, 2018
Physicists have identified a new state of matter whose structural order operates by rules more aligned with quantum mechanics than standard thermodynamic theory. In a classical material called artificial spin ice, which in certain phases appears disordered, the material is actually ordered, but in a "topological" form. "Our research shows for the first time that classical systems such as artificial spin ice can be designed to demonstrate topological ordered phases, which previously have been found only in quantum conditions," said Los Alamos National Laboratory physicist Cristiano Nisoli, leader of the theoretical group that collaborated with an experimental group at the University of Illinois at Urbana-Champaign, led by Peter Schiffer (now at Yale University). Physicists generally classify the phases of matter as ordered, such as crystal, and disordered, such as gases, and they do so on the basis of the symmetry of such order, Nisoli said. "The demonstration that these topological effects can be designed into an artificial spin ice system opens the door to a wide range of possible new studies," Schiffer said. Specialized material maintained puzzling energy levels in experiments In the new research, the team explored a particular artificial spin ice geometry, called Shakti spin ice. While these materials are theoretically designed, this time, the discovery of its exotic, out-of-equilibrium properties proceeded from experiments to theory. Performing photoemission electron microscopy characterization at the U.S. Department of Energy's Advanced Light Source at Lawrence Berkeley National Laboratory, Schiffer's team revealed something puzzling: Unlike other artificial spin ices, which could reach their low-energy state as temperature was reduced in successive quenches, Shakti spin ice stubbornly remained at about the same energy level. "The system gets stuck in a way that it cannot rearrange itself, even though a large-scale rearrangement would allow it to fall to a lower energy state," Schiffer said. Clearly, something was being conserved, but nothing appeared as an obvious candidate in a material artificially devised to provide a disordered spin picture. Moving away from a spin picture and concentrating on an emergent description of the excitations of the system, Nisoli described a low-energy state that could be mapped exactly into a celebrated theoretical model, the "dimer cover model," whose topological properties had been recognized before. Then, data from the experiment confirmed topological charge conservation and thus a long lifetime for the excitations. "I find it most intriguing because usually theoretical frameworks move from classical physics to quantum physics. Not so with topological order," Nisoli said. Physical experiments were performed by Schiffer's team at the University of Illinois at Urbana-Champaign and were funded by the U.S. Department of Energy's Office of Science. The kinetics of the material were investigated in real time and real space at the Advanced Light Source.
Research Report: Classical Topological Order in the Kinetics of Artificial Spin Ice
Is glass transition driven by thermodynamics? Tokyo, Japan (SPX) Mar 29, 2018 Glassy substances are everywhere, yet this state of matter poses many puzzles. The basic picture is clear enough - glasses are solids that lack the regular atomic structure of a crystal. How and why they form, however, are questions that have kept physicists busy for decades. Now, research from Japan has shown that glass formation can be understood if liquid structure is properly described. In Physical Review X, researchers from The University of Tokyo's Institute of Industrial Science (IIS) give ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |