. 24/7 Space News .
TECH SPACE
Finding order in disorder demonstrates a new state of matter
by Staff Writers
Los Alamos NM (SPX) Apr 03, 2018

Cristiano Nisoli.

Physicists have identified a new state of matter whose structural order operates by rules more aligned with quantum mechanics than standard thermodynamic theory. In a classical material called artificial spin ice, which in certain phases appears disordered, the material is actually ordered, but in a "topological" form.

"Our research shows for the first time that classical systems such as artificial spin ice can be designed to demonstrate topological ordered phases, which previously have been found only in quantum conditions," said Los Alamos National Laboratory physicist Cristiano Nisoli, leader of the theoretical group that collaborated with an experimental group at the University of Illinois at Urbana-Champaign, led by Peter Schiffer (now at Yale University).

Physicists generally classify the phases of matter as ordered, such as crystal, and disordered, such as gases, and they do so on the basis of the symmetry of such order, Nisoli said.

"The demonstration that these topological effects can be designed into an artificial spin ice system opens the door to a wide range of possible new studies," Schiffer said.

Specialized material maintained puzzling energy levels in experiments

In the new research, the team explored a particular artificial spin ice geometry, called Shakti spin ice. While these materials are theoretically designed, this time, the discovery of its exotic, out-of-equilibrium properties proceeded from experiments to theory.

Performing photoemission electron microscopy characterization at the U.S. Department of Energy's Advanced Light Source at Lawrence Berkeley National Laboratory, Schiffer's team revealed something puzzling: Unlike other artificial spin ices, which could reach their low-energy state as temperature was reduced in successive quenches, Shakti spin ice stubbornly remained at about the same energy level.

"The system gets stuck in a way that it cannot rearrange itself, even though a large-scale rearrangement would allow it to fall to a lower energy state," Schiffer said.

Clearly, something was being conserved, but nothing appeared as an obvious candidate in a material artificially devised to provide a disordered spin picture.

Moving away from a spin picture and concentrating on an emergent description of the excitations of the system, Nisoli described a low-energy state that could be mapped exactly into a celebrated theoretical model, the "dimer cover model," whose topological properties had been recognized before. Then, data from the experiment confirmed topological charge conservation and thus a long lifetime for the excitations.

"I find it most intriguing because usually theoretical frameworks move from classical physics to quantum physics. Not so with topological order," Nisoli said.

Physical experiments were performed by Schiffer's team at the University of Illinois at Urbana-Champaign and were funded by the U.S. Department of Energy's Office of Science. The kinetics of the material were investigated in real time and real space at the Advanced Light Source.

Research Report: Classical Topological Order in the Kinetics of Artificial Spin Ice


Related Links
Los Alamos National Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Is glass transition driven by thermodynamics?
Tokyo, Japan (SPX) Mar 29, 2018
Glassy substances are everywhere, yet this state of matter poses many puzzles. The basic picture is clear enough - glasses are solids that lack the regular atomic structure of a crystal. How and why they form, however, are questions that have kept physicists busy for decades. Now, research from Japan has shown that glass formation can be understood if liquid structure is properly described. In Physical Review X, researchers from The University of Tokyo's Institute of Industrial Science (IIS) give ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
A bridge so far: China's controversial megaproject

Coming down in flames: Fiery endings for spacecraft

Inspired by ASU NASA mission, students create space art

Airbus delivers new life support system for the ISS

TECH SPACE
Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

Air Force Chief of Staff: US 'On Track' to Replace Russian RD-180 Rocket Engine

Air Force awards launch contracts to SpaceX and ULA

TECH SPACE
Sol 2000: Roving for 2000 Martian Days

Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

Instruments for next NASA mission to Mars being tested under Germany's Black Forest

TECH SPACE
China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Chang'e-4 Lunar Probe will Reach the Far Side of the Moon

China to launch Long March-5B rocket next year

TECH SPACE
Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

Iridium Certus Distribution Expands; Enables Globally 'Connected Vehicles', Assets and Teams

TECH SPACE
Taming chaos: Calculating probability in complex systems

Researchers create microlaser that flies along hollow optical fiber

Pressing a button is more challenging than appears

Femtosecond laser fabrication: Realizing dynamics control of electrons

TECH SPACE
UK team to lead European mission to study new planets

TRAPPIST-1 planets provide clues to the nature of habitable worlds

ESA's next science mission to focus on nature of exoplanets

'Oumuamua likely came from a binary star system

TECH SPACE
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.