. 24/7 Space News .
STELLAR CHEMISTRY
Researchers Find "Missing Link" Between Magnetars And Rotation-Powered Pulsars
by Staff Writers
Tokyo, Japan (SPX) Oct 09, 2020

illustration only

Researchers from the RIKEN Cluster for Pioneering Research have made observations of a new magnetar, called Swift J1818.0-1607, which challenges current knowledge about two types of extreme stars, known as magnetars and pulsars. The research, just published in The Astrophysical Journal, was done using the Neutron star Interior Composition Explorer (NICER), an X-ray instrument aboard the International Space Station. Magnetars are a subtype of pulsars, which are neutron stars - degenerate stars that failed to become black holes but instead became extremely dense bodies composed mostly of neutrons.

Magnetars as well as some young rotation-powered pulsars - another type of pulsar - emit powerful X-ray beams, but the mechanism is believed to be different. With magnetars, the beams are believed to be powered by extremely strong magnetic fields, whereas in canonical pulsars they are powered by the rapid rotation of the star. However, there is much that is not well understood about these phenomena. Recently, several magnetars have been shown to emit radio waves - a property that was formerly thought to be limited to canonical rotation-powered pulsars - blurring the boundary between the two.

For the current study, work done by Chin-Ping Hu, a visiting researcher at the Extreme Natural Phenomena RIKEN Hakubi Research Team in the RIKEN Cluster for Pioneering Research and colleagues, has revealed a missing link between the two types of pulsar.

On March 12, a new gamma-ray burst was detected by the Burst Alert Telescope (BAT) aboard the Neil Gehrels Swift Observatory, a space-based gamma ray observatory. The object, believed to be a magnetar, was dubbed Swift J1818.0-1607. The RIKEN group and NICER team quickly moved into action. Four hours after the alert, they began making X-ray follow-up observations with NICER.

They found that the magnetar had a pulsation period of 1.36 seconds, the shortest among magnetars observed until now. Their observations showed that it was showing spin-down behavior - suggesting that the emissions were to some extent being powered by rotations - and that it had a magnetar-level surface magnetic field of 2.7+ 1014 Gauss, indicating that it is a young magnetar, formed about 420 years earlier. Studies of "glitches" - sudden changes in the rotational frequency that are important of understanding neutron stars - as well as the noisy timing behavior of its stellar rotation showed that it is indeed young. However, its X-ray emission was found to be lower than that of other magnetars, indicating that the star has attributes of both magnetars and rotation powered pulsars.

According to Hu, "Our study has given us new understanding of the neutron stars with high magnetic fields. Recent radio observations suggest that magnetars may be a cause of mysterious phenomena called fast radio bursts, so we look forward to investigating further."

According to Teruaki Enoto, team leader of the Extreme Natural Phenomena RIKEN Hakubi Research Team, "The discovery of a new magnetar is exactly what our magnetar and magnetosphere science team of NICER was waiting for. The NICER observatory is very well suited to monitoring X-ray pulsations from magnetars, and the bridge between the two types of pulsars that we discovered has contributed to our understanding of these mysterious objects."

Research paper


Related Links
RIKEN
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Revealing secret of lithium-rich stars by monitoring their heartbeats
Beijing, Chima (SPX) Oct 07, 2020
Lithium is an ancient element that is almost as old as the universe itself. As one of the building blocks of our present-day universe though, the context of lithium observed in many celestial bodies often disaccord with predictions of classic theories. Lithium-rich stars, accounting for only 1% of the total number of the low-mass evolved stars, is one example of such conflict. They preserve up to thousands of times more lithium than the normal stars that account for the rest 99%. Astronomers are w ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Simulated satellite rendezvous at ESA

ISS crew analyses dust movement to locate air leak in Russian Module

From Thales to space

Chief Engineer, Deborah Crane Talks Commercial Crew Launch

STELLAR CHEMISTRY
Testing a fiery reentry at DLR

ISRO plans to launch new rocket before Dec 2020

Georgia Southern University Shows Massive Tourism Boom for Spaceport Camden

NASA runs eight-part core stage Green Run Test for SLS

STELLAR CHEMISTRY
Mars at its biggest and brightest until 2035

Preserved dune fields offer insights into Martian history

The way forward to Mars

AI helps scientists discover fresh craters on Mars

STELLAR CHEMISTRY
Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

STELLAR CHEMISTRY
Corrective measures needed from satellite "mega-constellation" operators

First space census launches today

Clean and greener tennis using space technology

Despite pandemic-related setbacks, the NewSpace industry has new players enter the field

STELLAR CHEMISTRY
Satellite Industry Association releases space traffic management recommendations and white paper

Kongsberg awarded contract for mobile communication satellite

On the trail of causes of radiation events during space flight

Ultrasensitive microwave detector developed

STELLAR CHEMISTRY
Some planets may be better for life than Earth

Searching for the chemistry of life

New research explores how super flares affect planets' habitability

First direct observation of exoplanet Beta Pictoris c

STELLAR CHEMISTRY
Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.