. 24/7 Space News .
TECH SPACE
On the trail of causes of radiation events during space flight
by Staff Writers
Tokyo, Japan (SPX) Oct 07, 2020

stock illustration only

Scientists have made significant progress in understanding the sources of radiation events that could impact human space-flight operations. Relativistic Electron Precipitation (REP) events are instances when high energy electrons move through areas of space at significant fractions of the speed of light. These REP events may pose challenges to human spaceflight, specifically during extravehicular activity (EVA).

These hazards motivate the question of whether REP events can be forecasted in order to avoid unnecessary human exposure to radiation. In order to predict REP events, their cause must first be determined.

A scientific team led by researchers at the National Institute of Polar Research (NIPR) in Japan has made strides in answering that question. Their findings were published on August 14 in the Journal of Geophysical Research: Space Physics.

Ryuho Kataoka, the lead author of the study and an associate professor at NIPR, pinpointed the cause of REP events and emphasized that REP events must be accounted for in human spaceflight missions.

"The importance of understanding REP events has been increasing since the REP events have been clearly identified at International Space Station (ISS)," Kataoka said. "REP events are important because they cause radiation dose during EVAs."

It has been hypothesized that electromagnetic ion cyclotron (EMIC) waves play an important role in REP events at the ISS. It was still an open question, however, whether other mechanisms played a role in REP event generation. EMIC waves are electromagnetic waves that propagate through the plasma in Earth's magnetosphere, causing disturbances in the charged particles within the plasma.

Using multiple sensors aboard the ISS, as well as data from the Arase satellite, the research group was able to show that at least three separate processes contributed to REP events. One is indeed EMIC waves. But the data also suggested two other sources: Whistler mode chorus waves and electrostatic whistler waves. Whistler mode waves can be excited by high energy electrons associated with auroral activities, such as the Northern Lights.

"It turned out that REP events at the ISS are caused not only by EMIC waves but also by whistler mode waves, which makes the space weather forecast more difficult," Kataoka said.

With a better understanding of the physical causes of REP events, Kataoka and his team are working towards ways to predict future events. "The next step is the space weather forecast of REP events at the ISS by modeling different kinds of plasma wave activities. The ultimate goal is to obtain a unified theory to understand the interaction between energetic particles and plasma waves, and their impact of radiation dose on the atmosphere, space craft, and human beings."

Research paper


Related Links
Research Organization Of Information And Systems
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
How intense and dangerous is cosmic radiation on the Moon
Berlin, Germany (SPX) Sep 29, 2020
The Chang'e-4 lunar lander touched down on the far side of the Moon on 3 January 2019, with a German instrument for measuring space radiation on board. Since then, the Lunar Lander Neutron and Dosimetry (LND) instrument has been measuring temporally resolved cosmic radiation for the first time. Earlier devices could only record the entire 'mission dose'. In its current issue, the scientific journal Science Advances reports on the work of the international group of scientists involved with the LND, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russia to launch two new modules to Space Station in April, September 2021

Astronauts close to finding source of air leak at Space Station

NASA science and cargo on route to ISS on Northrop Grumman Resupply Mission

Russian Cosmonauts to test new system extracting water from urine on ISS

TECH SPACE
SpaceX aborts GPS satellite launch from Florida

Elon Musk to visit 2 SpaceX launch sites in Florida following tech scrubs

Earth-imaging and scientific payloads arrive for Arianespace's Vega mission in November

Rocket Factory Augsburg signs agreement with Andoya Space for maiden flight

TECH SPACE
The way forward to Mars

The topography of the Jezero crater landing site of NASA's Mars 2020 mission

AI helps scientists discover fresh craters on Mars

NASA's New Mars Rover Is Ready for Space Lasers

TECH SPACE
Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

TECH SPACE
Despite pandemic-related setbacks, the NewSpace industry has new players enter the field

Court approves sale of OneWeb to the UK Government and Bharti Global

Redcliffe Partners' Ukrainian Space Regulation Review

UK to launch new international space collaborations

TECH SPACE
How intense and dangerous is cosmic radiation on the Moon

Ultrasensitive microwave detector developed

New study on the space durability of 3D-printed nanocomposites

AFRL repairs next generation composite materials with light

TECH SPACE
First direct observation of exoplanet Beta Pictoris c

Is there other life in the universe

Exoplanet hunter snares 'extreme' superhot world

Recipe is different, But Titan has ingredients for life

TECH SPACE
SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis

Jupiter's moons could be warming each other









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.