. 24/7 Space News .
EARTH OBSERVATION
Quick and not-so-dirty: A rapid nano-filter for clean water
by Staff Writers
Melbourne, Australia (SPX) Sep 21, 2018

file image

Australian researchers have designed a rapid nano-filter that can clean dirty water over 100 times faster than current technology.

Simple to make and simple to scale up, the technology harnesses naturally occurring nano-structures that grow on liquid metals.

The RMIT University and University of New South Wales (UNSW) researchers behind the innovation have shown it can filter both heavy metals and oils from water at extraordinary speed.

RMIT researcher Dr Ali Zavabeti said water contamination remains a significant challenge globally - 1 in 9 people have no clean water close to home.

"Heavy metal contamination causes serious health problems and children are particularly vulnerable," Zavabeti said.

"Our new nano-filter is sustainable, environmentally-friendly, scalable and low cost.

"We've shown it works to remove lead and oil from water but we also know it has potential to target other common contaminants.

"Previous research has already shown the materials we used are effective in absorbing contaminants like mercury, sulfates and phosphates.

"With further development and commercial support, this new nano-filter could be a cheap and ultra-fast solution to the problem of dirty water."

The liquid metal chemistry process developed by the researchers has potential applications across a range of industries including electronics, membranes, optics and catalysis.

"The technique is potentially of significant industrial value, since it can be readily upscaled, the liquid metal can be reused, and the process requires only short reaction times and low temperatures," Zavabeti said.

Project leader Professor Kourosh Kalantar-zadeh, Honorary Professor at RMIT, Australian Research Council Laureate Fellow and Professor of Chemical Engineering at UNSW, said the liquid metal chemistry used in the process enabled differently shaped nano-structures to be grown, either as the atomically thin sheets used for the nano-filter or as nano-fibrous structures.

"Growing these materials conventionally is power intensive, requires high temperatures, extensive processing times and uses toxic metals. Liquid metal chemistry avoids all these issues so it's an outstanding alternative."

How it works
The groundbreaking technology is sustainable, environmentally-friendly, scalable and low-cost.

The researchers created an alloy by combining gallium-based liquid metals with aluminium.

When this alloy is exposed to water, nano-thin sheets of aluminium oxide compounds grow naturally on the surface.

These atomically thin layers - 100,000 times thinner than a human hair - restack in a wrinkled fashion, making them highly porous.

This enables water to pass through rapidly while the aluminium oxide compounds absorbs the contaminants.

Experiments showed the nano-filter made of stacked atomically thin sheets was efficient at removing lead from water that had been contaminated at over 13 times safe drinking levels, and was highly effective in separating oil from water.

The process generates no waste and requires just aluminium and water, with the liquid metals reused for each new batch of nano-structures.

The method developed by the researchers can be used to grow nano-structured materials as ultra-thin sheets and also as nano-fibres.

These different shapes have different characteristics - the ultra-thin sheets used in the nano-filter experiments have high mechanical stiffness, while the nano-fibres are highly translucent.

The ability to grow materials with different characteristics offers opportunities to tailor the shapes to enhance their different properties for applications in electronics, membranes, optics and catalysis.

Research paper


Related Links
RMIT University
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
A study by MSU scientists will help specify the models of the Earth atmosphere circulation
Moscow, Russia (SPX) Aug 24, 2018
The Couette spherical flow is the flow of liquid in a spherical layer caused by the rotation of its borders. In a laboratory setting it is studied using two transparent spheres: the outer one is fixed and the inner one rotates at a given speed. This model helps to describe large scale movements of the atmosphere, oceans, and mantle of the Earth caused by the planet's rotation. All these natural processes are usually turbulent. The first step to turbulence is the loss of stability by a permanent fl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Danish Aerospace Company ApS to build 'next generation,' multi-function exercise equipment for astronauts

How NASA Goddard tests tools astronauts will use to explore distant worlds

Russian space industry source says no new leaks found at ISS

ISRO Not To Fly Living Being Before Actual Manned Space Mission: Official

EARTH OBSERVATION
NASA blasts off space laser satellite to track ice loss

Roscosmos Finds No Flaw in Fabric of Soyuz Vehicle at Assembly Stage - Source

SpaceX announces new plan to send tourist around Moon

Arianespace's Vega to orbit THEOS-2 for Thailand's GISTDA

EARTH OBSERVATION
River basin provides evidence of ancient ocean on Mars

Curiosity Surveys a Mystery Under Dusty Skies

A new listening plan for Mars Opportunity rover

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

EARTH OBSERVATION
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

EARTH OBSERVATION
Creating Dynamism in Indian Space Ecosystem

Making space exploration real on Earth

Telesat advanced satellite begins on-orbit operations reports SSL

Iridium and Rolls-Royce Marine to expand the reach and capabilities of autonomous vessels

EARTH OBSERVATION
World's first passive anti-frosting surface fights ice with ice

Searching for new bridge forms that can span further

UTA researcher creates hydrogels capable of complex movement

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry

EARTH OBSERVATION
New Exoplanet Discovered by Team Led by Canadian Student

SwRI scientists find evidence for early planetary shake-up

A Direct-Imaging Mission to Study Earth-like Exoplanets

Youngest Accretion Disk Detected in Star Formation

EARTH OBSERVATION
New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.