. 24/7 Space News .
CHIP TECH
Quantum computers getting connected
by Staff Writers
Stuttgart, Germany (SPX) Dec 01, 2021

Visualisation of a VSi centre integrated into a nanophotonic SiC waveguide.

A promising route towards larger quantum computers is to orchestrate multiple task-optimised smaller systems. To dynamically connect and entangle any two systems, photonic interference emerges as a powerful method, due to its compatibility with on-chip devices and long-distance propagation in quantum networks.

One of the main obstacles towards the commercialization of quantum photonics remains the nanoscale fabrication and integration of scalable quantum systems due to their notorious sensitivity to the smallest disturbances in the close environment. This has made it an extraordinary challenge to develop systems that can be used for quantum computing while simultaneously offering an efficient optical interface.

A recent result published in Nature Materials shows how the integration obstacle can be overcome. The work is based on a multi-national collaboration with researchers from Universities of Stuttgart (Physics 3), California - Davis, Linkoping and Kyoto, as well as the Fraunhofer Institute at Erlangen, the Helmholtz Centre at Dresden and the Leibniz-Institute at Leipzig.

The researchers followed a two-step approach. First, their quantum system of choice is the so-called silicon vacancy centre in silicon carbide, which is known to possess particularly robust spin-optical properties. Second, they fabricated nanophotonic waveguides around these colour centres using gentle processing methods that keep the host material essentially free of damage.

"With our approach, we could demonstrate that the excellent spin-optical properties of our colour centres are maintained after nanophotonic integration." says Florian Kaiser, Assistant Professor at the University of Stuttgart, the supervisor of this project. "Thanks to the robustness of our quantum devices, we gained enough headroom to perform quantum gates on multiple nuclear spin qubits. As these spins show very long coherence times, they are excellent for implementing small quantum computers."

"In this project, we explored the peculiar triangular shape of photonic devices. While this geometry is of commercial appeal because it provides versatility needed for scalable production, little has been known about its utility for high performing quantum hardware. Our studies reveal that light emitted by the colour centre, which carries quantum information across the chip, can be efficiently propagated through a single optical mode. This is a key conclusion for viability of integration of colour centres with other photonic devices, such as nanocavities, optical fibre and single-photon detectors, needed to realize full functionalities of quantum networking and computing." - says Marina Radulaski, Assistant Professor at the University of California - Davis.

What makes the silicon carbide platform particularly interesting are its CMOS compatibility and its heavy usage as high-power semiconductor in electric mobility. The researchers now want to benefit from these aspects to leverage the scalable production of spin-photonics chips. Additionally, they want to implement semiconductor circuitry to electrically initialise and readout the quantum states of their spin qubits.

"Maximising electrical control - instead of traditional optical control via lasers - is an important step towards system simplification. The combination of efficient nanophotonics with electrical control will allow us to reliably integrate more quantum systems on one chip, which will result in significant performance gains.", adds Florian Kaiser, "In this sense, we are only at the dawn of quantum technologies with colour centres in silicon carbide. Our successful nanophotonic integration is not only an exciting enabler for distributed quantum computing, but it can also boost the performance of compact quantum sensors."

Research Report: "Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence"


Related Links
Universitaet Stuttgart
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
A simpler design for quantum computers
Stanford CA (SPX) Dec 01, 2021
Today's quantum computers are complicated to build, difficult to scale up, and require temperatures colder than interstellar space to operate. These challenges have led researchers to explore the possibility of building quantum computers that work using photons - particles of light. Photons can easily carry information from one place to another, and photonic quantum computers can operate at room temperature, so this approach is promising. However, although people have successfully created individual qua ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Nanoracks led team want to build a commercial space station

A Cornucopia of Microbial Foods

Vice President Harris outlines space policy aimed at 'growing threats'

Tech 2022 trends: Meatless meat, Web 3.0, Big Tech battles

CHIP TECH
Rocket Lab reveals Neutron launch vehicle's advanced architecture

SpaceX Starlink launch from Florida delayed to Thursday

Pulsar Fusion Demonstrates Green Mach-7 rocket in Switzerland

Elon Musk: SpaceX faces possible bankruptcy because of engine woes

CHIP TECH
Guiding Tianwen-1 to China's first successful Mars rover landing

For the curious there's always room for seconds

Curiosity sends a picture postcard from Mars

ASU team celebrates 20th anniversary of NASA's Mars Odyssey Orbiter arrival at the Red Planet

CHIP TECH
Tianzhou cargo craft to help advance science

Rocket industrial park put into operation in Wuhan

Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

CHIP TECH
Carrier rocket takes off from Sichuan province

ESA helps Greece to boost its space investments

Apply now to the brand new ESA Junior Professional Programme!

FCC Validates SES Phase I Accelerated C-band Clearing and Relocation Certification

CHIP TECH
Researchers develop novel 3D printing technique to engineer biofilms

Light-powered soft robots could suck up oil spills

Researchers team up to get a clearer picture of molten salts

Reshaping the plastic lifecycle into a circle

CHIP TECH
New possibilities for life at the bottom of Earth and other Oceanic Worlds

Prototype SETI hardware gets first data from VLA

Orbital harmony limits late arrival of water on TRAPPIST-1 planets

Hubble Finds Flame Nebula's Searing Stars May Halt Planet Formation

CHIP TECH
Are Water Plumes Spraying from Europa

Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.