. 24/7 Space News .
TIME AND SPACE
Quantum bugs, meet your new swatter
by Staff Writers
Houston TX (SPX) Aug 22, 2018

An illustration shows rubidium atom qubits isolated by scientists at the National Institute of Standards and Technology and proposed for use in quantum computers. A team led by Rice University computer scientist Anastasios Kyrillidis has proposed a scalable algorithm to significantly accelerate the task of validating the accuracy of quantum computers.

A Rice University computer scientist and his colleagues have proposed a method to accelerate and simplify the imposing task of diagnosing quantum computers.

Anastasios Kyrillidis, an assistant professor of computer science who joined Rice this year, led the development of a nonconventional method as a diagnostic tool for powerful, next-generation computers that depend on the spooky actions of quantum bits - aka qubits - which are switches that operate under rules that differ from the 1s and 0s in classical computers.

Quantum computers exploit the principles of quantum mechanics to quickly solve tough problems that would take far longer on conventional supercomputers. They promise future breakthroughs in drug design, advanced materials, cryptography and artificial intelligence.

An open-access paper by Kyrillidis and his team appears in the Nature journal Quantum Information.

Like any new hardware, Kyrillidis said, quantum computer systems are prone to bugs that need to be squashed. That takes continuous testing to validate their capabilities. The sheer complexity of quantum computers that do exponentially more with every bit requires an immense amount of validation, he said.

Kyrillidis' method focuses on quantum state tomography, a process inspired by medical tomography in which images of a body are captured in slices that are later reassembled into a three-dimensional map. Quantum state tomography differs, he said, as it takes "images" of the state of a quantum computer's qubits.

"When a quantum computer executes an algorithm, it starts at a specific state; think of it as the input to the algorithm," Kyrillidis said. "As the computer progresses through steps of the algorithm, it's going through many states. The state at the very end is the answer to your algorithm's question."

By reassembling the full state from these measurements, Kyrillidis said one can later pinpoint hardware or software errors that may have caused the computer to deliver unexpected results.

That takes a lot of measurements, and the computational cost of reconstruction can be high, even for classical computers, he said. Tomography-based analysis of quantum computers with even as few as five or six qubits would be prohibitive without somehow simplifying the task - and state-of-the-art machines have 50 qubits or more.

Qubits are the basic units of information in a quantum computer. Like a bit in a classical computer, each qubit can represent either 1 or 0. Unlike a bit, a qubit can also represent 1 and 0 simultaneously, a state called superposition that exponentially raises the number of calculations an array of qubits can perform at once. To make it more interesting, the state of the qubit as determined by magnetic polarization or electron spin only exists when it's measured.

Kyrillidis said even a modest increase in the number of qubits in a computer dramatically increases its power.

"In a system with five qubits, the state can be represented by a 2-to-the-5 times 2-to-the-5 matrix, so it's a 32-by-32 matrix," he said.

"That's not big. But in a 20-qubit system like the one at IBM, the state can be characterized by a million-by-million matrix. If we were taking full measurements with regular tomography techniques, we would need to poll the system roughly a million-squared times in order to get enough information to recover its state."

Kyrillidis and his team solved the validation problem with an algorithm they call Projected Factored Gradient Decent (ProjFGD). It takes advantage of compressed sensing, a method that minimizes the amount of incoming data while still ensuring accurate results. He said the method would cut the number of measurements for a 20-qubit system to a mere million or so. "That's still a big number, but much smaller than a million squared," he said.

Kyrillidis noted that IBM, where he spent a year as a research scientist before coming to Rice, has put a quantum computer in the cloud where anyone can access it and run programs. He said the company reasons that the more people learn about programming for quantum computers now, the more mature their skills will be when the platform comes of age. But there's a side benefit for him, as it gives him a ready platform to test ProjFGD.

"The quantum state tomography tool is generic, and has more to do with the nature of the qubit rather than the specific architecture," Kyrillidis said. "As quantum computers get more powerful, it can definitely be scaled up to certify systems."

Research paper


Related Links
Rice University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Unraveling the nature of 'whistlers' from space in the lab
Washington DC (SPX) Aug 16, 2018
Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" - very low frequency packets of radio waves that race along magnetic field lines. This first-of-its-kind study, appearing in the Physics of Plasmas, from AIP Publishing, provides new insights into the nature of whistlers and space plasmas - regions of energized particles trapped by Earth's magnetic fields. These studies could one day aid in the development of pract ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
What is NASA's Heat Melt Compactor?

NASA Administrator Views SLS Progress During First Visit to Marshall

Goonhilly and Spacebit parpace to accelerate commercial space exploration through blockchain technology

Sierra Nevada Corporation completes key step for NASA's NextSTEP-2 study

TIME AND SPACE
Stennis Begins 5th Series of RS-25 Engine Tests

RS-25 Engine Tests Modernization Upgrades

Aerojet Rocketdyne Expands Solid Rocket Motor Center of Excellence at Arkansas Facility

Student Experiments Soar with Early Morning Launch from Wallops

TIME AND SPACE
NASA's InSight passes halfway to Mars, instruments check in

Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

TIME AND SPACE
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

TIME AND SPACE
Three top Russian space industry execs held for 'fraud'

ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

'We're at Beginning of New Phase of Utilizing Space For Peaceful Purposes'

NASA invests in concepts for a vibrant future commercial space economy

TIME AND SPACE
Scientists create antilaser for ultracold atoms condensate

Strange metals just got stranger

Army to test body armor made from spider silk

The 2-D form of tungsten ditelluride is full of surprises

TIME AND SPACE
Discovery of a structurally 'inside-out' planetary nebula

Under pressure, hydrogen offers a reflection of giant planet interiors

Scientists discovered organic acid in a protoplanetary disk

Iron and titanium in the atmosphere of exoplanet orbiting KELT-9

TIME AND SPACE
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.