. 24/7 Space News .
EXO WORLDS
Under pressure, hydrogen offers a reflection of giant planet interiors
by Staff Writers
Washington DC (SPX) Aug 20, 2018

"To build better models of potential exoplanetary architecture, this transition between gas and metallic liquid hydrogen must be demonstrated and understood," Goncharov explained. "Which is why we focused on pinpointing the onset of reflectivity in compressed deuterium, moving us closer to a complete vision of this important process." (file image)

Lab-based mimicry allowed an international team of physicists including Carnegie's Alexander Goncharov to probe hydrogen under the conditions found in the interiors of giant planets - where experts believe it gets squeezed until it becomes a liquid metal, capable of conducting electricity. Their work is published in Science.

Hydrogen is the most-abundant element in the universe and the simplest - comprised of only one proton and one electron in each atom. But that simplicity is deceptive, because there is still so much to learn about it, including its behavior under conditions not found on Earth.

For example, although hydrogen on the surface of giant planets, like our Solar System's Jupiter and Saturn, is a gas, just like it is on our own planet, deep inside these giant planetary interiors, scientists believe it becomes a metallic liquid.

"This transformation has been a longstanding focus of attention in physics and planetary science," said lead author Peter Celliers of Lawrence Livermore National Laboratory.

The research team - which also included scientists from the French Alternative Energies and Atomic Energy Commission, University of Edinburgh, University of Rochester, University of California Berkeley, and George Washington University - focused on this gas-to-metallic-liquid transition in molecular hydrogen's heavier isotope deuterium. (Isotopes are atoms of the same element that have the same number of protons but a different number of neutrons.)

They studied how deuterium's ability to absorb or reflect light changed under up to nearly six million times normal atmospheric pressure (600 gigapascals) and at temperatures less than 1,700 degrees Celsius (about 3,140 degrees Fahrenheit). Reflectivity can indicate that a material is metallic.

They found that under about 1.5 million times normal atmospheric pressure (150 gigapascals) the deuterium switched from transparent to opaque - absorbing the light instead of allowing it to pass through. But a transition to metal-like reflectivity started at nearly 2 million times normal atmospheric pressure (200 gigapascals).

"To build better models of potential exoplanetary architecture, this transition between gas and metallic liquid hydrogen must be demonstrated and understood," Goncharov explained. "Which is why we focused on pinpointing the onset of reflectivity in compressed deuterium, moving us closer to a complete vision of this important process."


Related Links
Carnegie Institution for Science
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Magnetic fields can quash zonal jets deep in gas giants
Livermore CA (SPX) Aug 10, 2018
Magnetic fields around a planet or the Sun can overpower the zonal jets that affect atmospheric circulation. New research by a Lawrence Livermore National Laboratory (LLNL) scientist and a collaborator from the Australian National University (ANU) provides a theoretical explanation for why self-organized fluid flows called zonal jets or "zonal flows" can be suppressed by the presence of a magnetic field. The research appears in The Astrophysical Journal. Zonal flows are observed in the bande ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
NASA Administrator Views SLS Progress During First Visit to Marshall

Goonhilly and Spacebit parpace to accelerate commercial space exploration through blockchain technology

NASA Administrator Plans to Meet With Russian Space Agency Chief in Near Future

India to send manned mission to space by 2022: Modi

EXO WORLDS
Aerojet Rocketdyne Expands Solid Rocket Motor Center of Excellence at Arkansas Facility

Stennis Begins 5th Series of RS-25 Engine Tests

Student Experiments Soar with Early Morning Launch from Wallops

NASA Administrator Views Progress Building SLS and Orion Hardware

EXO WORLDS
Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

Aerojet Rocketdyne delivers power generator for Mars 2020 Rover

EXO WORLDS
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

EXO WORLDS
ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

New Image Gallery For The Planetary Science Archive

'We're at Beginning of New Phase of Utilizing Space For Peaceful Purposes'

NASA invests in concepts for a vibrant future commercial space economy

EXO WORLDS
Wearable 'microbrewery' saves human body from radiation damage

Scientists develop way to supercool liquids without freezing them

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again

PhD student develops spinning heat shield for future spacecraft

EXO WORLDS
Scientists discovered organic acid in a protoplanetary disk

Impact of a stellar intruder on our solar system

Iron and titanium in the atmosphere of exoplanet orbiting KELT-9

Ultrahot planets have starlike atmospheres

EXO WORLDS
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.