. | . |
RS-25 Engine Tests Modernization Upgrades by Staff Writers Stennis Space Center, MS (SPX) Aug 20, 2018
With NASA Administrator James "Jim" Bridenstine in attendance, Aerojet Rocketdyne marked a significant milestone in efforts to reduce costs on the RS-25 engine that powers NASA's new rocket, the Space Launch System (SLS), at NASA's Stennis Space Center. The occasion was a hot-fire test of an RS-25 development engine where its main combustion chamber (MCC), the very heart of the engine, was fabricated using a bonding technique called hot isostatic pressing (HIP), an innovative manufacturing process that saves considerable time and money over more traditional methods. Initial test data indicates the chamber performed flawlessly during the 319-second test, which represents the anticipated SLS flight profile. Each SLS is powered by four RS-25 engines. Currently, the SLS program has 16 engines in its inventory remaining from the space shuttle, enough for four flights. New flight controllers are being made for these engines and today's development engine tested another flight controller to certify it is ready for integration with a flight engine. Engines produced for later flights will incorporate additional manufacturing updates to reduce costs for certain parts of the engine. "As we develop a new generation of RS-25 engines, ensuring they continue to remain reliable while reducing costs is a major focus at Aerojet Rocketdyne," said Eileen Drake, Aerojet Rocketdyne CEO and president. "That's why we're working hard to drive down costs on the RS-25 by incorporating the most modern and efficient manufacturing techniques." Aerojet Rocketdyne is under contract to manufacture an initial set of six new engines for future SLS missions. These new engines will be fabricated using the components and techniques that are being validated now on development engines at Stennis. The test also marked the fifth successful demonstration of an additively manufactured Pogo Accumulator Assembly. The "Pogo" is a critical component that dampens potential engine propellant pressure oscillations that can cause a rocket to become unstable in flight. The 3-D printed Pogo, which is about the size of a beach ball, continued to perform as designed during the test series, bringing the promise of further RS-25 cost savings via additive manufacturing closer to reality. A HIP-bonded MCC is the latest component developed under the new engine contract to enter hot-fire testing. The HIP-bonding technique employs high pressure and heat to create bonds between engine details that can withstand extremely high stress applications. In the case of the RS-25 MCC, where the engine's "smoke and fire" initiates, that means withstanding combustion temperatures exceeding 6,000 degrees Fahrenheit and pressures over 3,000 psi. "The HIP-bonded MCC is the single largest affordability improvement being incorporated into the new RS-25 engines," continued Drake. "It cuts in half both the cost and fabrication cycle time compared to the heritage Space Shuttle Main Engines. HIP bonding is also an extremely robust and predictable process, which greatly reduces process variation." HIP-bonded combustion chambers are flying on Aerojet Rocketdyne's RS-68A engines, the booster engine for United Launch Alliance's Delta IV satellite-launching workhorse. The process was also successfully validated during the J-2X upper stage and the X-33 Linear Aerospike engine development programs. "We were incredibly honored to have Administrator Bridenstine witness an RS-25 engine and see first-hand the affordability initiatives we are undertaking with this engine and program," added Drake.
RS-25 Engine Tests Modernization Upgrades Stennis Space Center, MS (SPX) Aug 16, 2018 With NASA Administrator James "Jim" Bridenstine in attendance, Aerojet Rocketdyne marked a significant milestone in efforts to reduce costs on the RS-25 engine that powers NASA's new rocket, the Space Launch System (SLS), at NASA's Stennis Space Center. The occasion was a hot-fire test of an RS-25 development engine where its main combustion chamber (MCC), the very heart of the engine, was fabricated using a bonding technique called hot isostatic pressing (HIP), an innovative manufacturing process ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |