. | . |
Psyche Mission Has a Metal World in Its Sights by Staff Writers Pasadena CA (JPL) Jun 12, 2019
Designed to explore a metal asteroid that could be the heart of a planet, the Psyche mission is readying for a 2022 launch. After extensive review, NASA Headquarters in Washington has approved the mission to begin the final design and fabrication phase, otherwise known as Phase C. This is when the Psyche team finalizes the system design, develops detailed plans and procedures for the spacecraft and science mission, and completes both assembly and testing of the spacecraft and its subsystems. "The Psyche team is not only elated that we have the go-ahead for Phase C, more importantly we are ready," said Principal Investigator Lindy Elkins-Tanton of Arizona State University in Tempe. "With the transition into this new mission phase, we are one big step closer to uncovering the secrets of Psyche, a giant mysterious metallic asteroid, and that means the world to us." The mission still has three more phases to clear. Phase D, which will begin sometime in early 2021, includes final spacecraft assembly and testing, along with the August 2022 launch. Phase E, which begins soon after Psyche hits the vacuum of space, covers the mission's deep-space operations and science collection. Finally, Phase F occurs after the mission has completed its science operations; it includes both decommissioning the spacecraft and archiving engineering and science data. The Psyche spacecraft will arrive at Asteroid Psyche on Jan. 31, 2026, after flying by Mars in 2023. Asteroid Psyche is one of the most intriguing targets in the main asteroid belt. While most asteroids are rocky or icy bodies, scientists think Psyche is composed mostly of iron and nickel, similar to Earth's core. They wonder whether Psyche could be the nickel-iron heart, or exposed core, of an early planet maybe as large as Mars that lost its rocky outer layers through violent collisions billions of years ago. If so, it would provide a unique look into the solar system's distant past, when the kind of high-speed protoplanet encounters that created Earth and the other terrestrial planets were common. The Psyche mission aims to understand the building blocks of planet formation by exploring firsthand a wholly new and uncharted type of world. Along with determining whether Psyche is the core of an early planet, the team wants to determine how old it is, whether it formed in similar ways to Earth's core and what its surface is like. The spacecraft's instrument payload includes three science instruments. The mission's magnetometer is designed to detect and measure the remnant magnetic field of the asteroid. The multispectral imager will provide high-resolution images using filters to discriminate between Psyche's metallic and silicate constituents. Its gamma ray and neutron spectrometer will detect, measure and map Psyche's elemental composition. The mission also will test a sophisticated new laser communications technology, called Deep Space Optical Communications. The Psyche mission is part of NASA's Discovery Program, a series of lower-cost, highly focused robotic space missions. Psyche Principal Investigator Lindy Elkins-Tanton is the director of ASU's School of Earth and Space Exploration. Other ASU researchers on the Psyche mission team include Jim Bell, deputy principal investigator and co-investigator; David Williams, co-investigator; and Catherine Bowman, co-investigator and student-collaborations lead. ASU leads the mission. NASA's Jet Propulsion Laboratory in Pasadena, California, is responsible for the mission's overall management, system engineering, integration and test, and mission operations. Maxar Space Solutions, formerly Space Systems Loral, in Palo Alto, California, is providing a high-power solar electric propulsion spacecraft chassis.
VLT Observes Passing Double Asteroid Hurtling by Earth Garching, Germany (SPX) Jun 04, 2019 The unique capabilities of the SPHERE instrument on ESO's Very Large Telescope have enabled it to obtain the sharpest images of a double asteroid as it flew by Earth on 25 May. While this double asteroid was not itself a threatening object, scientists used the opportunity to rehearse the response to a hazardous Near-Earth Object (NEO), proving that ESO's front-line technology could be critical in planetary defence. The International Asteroid Warning Network (IAWN) coordinated a cross-organisationa ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |