. 24/7 Space News .
CHIP TECH
Programmable interaction between quantum magnets
by Staff Writers
Heidelberg, Germany (SPX) Dec 01, 2021

On the left, a disordered ensemble of classical magnets in a stable equilibrium configuration. On average, the system appears not to be magnetised. On the right, Floquet engineering has stalled the magnets' reorientation. The quantum magnets maintain their aligned configuration for a long time in spite of the disorder.

The forces between particles, atoms, molecules, or even macroscopic objects like magnets are determined by the interactions of nature. For example, two closely lying bar magnets realign themselves under the influence of magnetic forces. A team led by Prof. Dr Matthias Weidemuller and Dr Gerhard Zurn at the Center for Quantum Dynamics of Heidelberg University has now succeeded in its aim to change not only the strength but also the nature of the interaction between microscopic quantum magnets, known as spins.

Instead of falling into a state of complete disorder, the especially prepared magnets can maintain their original orientation for a long period. With these findings, the Heidelberg physicists have successfully demonstrated a programmable control of spin interactions in isolated quantum systems.

Magnetic systems can exhibit surprising behaviour when they are prepared in an unstable configuration. For example, constraining a collection of spatially disordered magnetic dipoles, such as bar magnets, to be aligned in the same direction, will lead to a subsequent reorientation of the magnets. This ultimately results in an equilibrium in which all magnets are randomly oriented. While the majority of investigations used to be limited to classical magnetic dipoles, it has recently become possible to expand the approaches to quantum magnets using what are called quantum simulators. Synthetic atomic systems mimic the fundamental physics of magnetic phenomena in an extremely well-controlled environment where all relevant parameters can be adjusted almost at will.

In their quantum simulation experiments, the researchers used a gas of atoms that was cooled down to a temperature near absolute zero. Using laser light, the atoms were excited to extremely high electronic states, separating the electron by almost macroscopic distances from the atomic nucleus. These "atomic giants", also known as Rydberg atoms, interact with each other over distances of almost a hair's breadth.

"An ensemble of Rydberg atoms exhibits exactly the same characteristics as interacting disordered quantum magnets, making it an ideal platform to simulate and explore quantum magnetism," states Dr Nithiwadee Thaicharoen, who was a postdoc on Prof. Weidemuller's team at the Institute for Physics and now continues her research as a professor in Thailand.

The essential trick of the Heidelberg physicists was to steer the dynamics of the quantum magnets by adopting methods from the field of nuclear magnetic resonance. In their experiments, the researchers apply especially designed periodic microwave pulses to modify the atomic spin. A major challenge was to precisely control the interaction between the atomic spins using this technique, known as Floquet engineering.

"The microwave pulses had to be applied to the Rydberg atoms at timescales of a billionth of a second, with these atoms being super-sensitive at the same time to any external perturbation, however tiny, like minute electric fields," says Dr Clement Hainaut, a postdoc on the team who recently moved to the University of Lille (France). "We nonetheless succeeded in stalling the spin's seemingly inevitable reorientation and maintaining a macroscopic magnetisation through our control protocol," explains doctoral student Sebastian Geier.

"Using our Floquet engineering approach, it should now be possible to reverse the timeline such that the spin system inverts its evolution after having gone through a very complex dynamic. It would be like a broken glass magically reassembling itself after it has crashed onto the floor."

The studies are an important step towards a better understanding of basic processes in complex quantum systems. "After the first and second quantum revolution, which led to the understanding of the systems and the precise control of single objects, we are confident that our technique of dynamically adjusting interactions in a programmable fashion opens a path to Quantum Technologies 3.0," concludes Matthias Weidemuller, professor at the Institute for Physics and Director of Heidelberg University's Center for Quantum Dynamics.

The experiments were conducted in the framework of the STRUCTURES Cluster of Excellence and the "Isolated quantum systems and universality under extreme conditions" Collaborative Research Centre (ISOQUANT) of Heidelberg University. The activities are also part of PASQuans, the "Programmable Atomic Large-Scale Quantum Simulation" collaboration, within the European Quantum Technologies Flagship.

Research Report: "Floquet Hamiltonian Engineering of an Isolated Many-Body Spin System"


Related Links
Heidelberg University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
UArizona researchers develop ultra-thin 'computer on the bone'
Tucson AZ (SPX) Nov 22, 2021
A team of University of Arizona researchers has developed an ultra-thin wireless device that grows to the surface of bone and could someday help physicians monitor bone health and healing over long periods. The devices, called osseosurface electronics, are described in a paper published Thursday in Nature Communications. "As a surgeon, I am most excited about using measurements collected with osseosurface electronics to someday provide my patients with individualized orthopedic care - with the goa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Tech 2022 trends: Meatless meat, Web 3.0, Big Tech battles

Japanese space tourists arrive at launch site ahead of ISS trip

Daughter of first American in space on next Blue Origin flight

Russia launches new docking module to ISS

CHIP TECH
Rocket Lab Announces Neutron Development Update to be Provided on December 2, 2021

RocketStar gets SBIR contract to develop new plasma thrusters

Rocket Lab confirms helicopter capture attempt for next recovery mission

OHB Luxspace inks contract with Exotrail for ExoMGTM electric propulsion system onboard Triton-X Heavy platform.

CHIP TECH
For the curious there's always room for seconds

Curiosity sends a picture postcard from Mars

ASU team celebrates 20th anniversary of NASA's Mars Odyssey Orbiter arrival at the Red Planet

Analysis of Mars's wind-induced vibrations sheds light on the planet's subsurface properties

CHIP TECH
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

CHIP TECH
Apply now to the brand new ESA Junior Professional Programme!

First Airbus built Inmarsat-6 satellite shipped to Japan ready for launch

Satellite operator Telesat goes public

CGI selected for GSA's ASTRO space and development IDIQ contract

CHIP TECH
Researchers team up to get a clearer picture of molten salts

Reshaping the plastic lifecycle into a circle

Major Swedish initiative in new materials for a sustainable future

Eagle professor's space debris removal device receives patent

CHIP TECH
New possibilities for life at the bottom of Earth and other Oceanic Worlds

Prototype SETI hardware gets first data from VLA

Hubble Finds Flame Nebula's Searing Stars May Halt Planet Formation

One year on this giant, blistering hot planet is just 16 hours long

CHIP TECH
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.