. 24/7 Space News .
IRON AND ICE
Planetary astronomer co-authors studies of asteroid as member of NASA's OSIRIS-REx mission
by Staff Writers
Flagstaff AZ (SPX) Oct 09, 2020

stock illustration only

NASA's OSIRIS-REx spacecraft mission, launched on Sept. 8, 2016, is the first U.S. mission designed to retrieve a pristine sample of an asteroid and return it to Earth for further study. The mission's target is Bennu, a carbon-rich near-Earth asteroid that is potentially hazardous, representing an approximately 1 in 2,700 chance of impacting the Earth late in the 22nd century.

Scientists believe Bennu may contain the molecular precursors to the origin of life and the Earth's oceans, so one of the mission's main objectives is to determine Bennu's physical and chemical properties.

"The spacecraft has been observing the asteroid for nearly two years now," said Joshua Emery, associate professor in NAU's Department of Astronomy and Planetary Science and a member of the OSIRIS-REx science team. "Bennu has turned out to be a fascinating small asteroid and has given us many surprises."

The mission's first attempt to pick up the sample is scheduled for Oct. 20, 2020, and the spacecraft is scheduled to return the sample back to Earth on Sept. 24, 2023. In advance of the sample collection, the science team published a set of six papers in Science and Science Advances, four of which Emery co-authored, to share its scientific findings to date while building interest in the upcoming event.

"We've been working for over a decade toward the upcoming sampling attempt," he said. "It's such an exciting time. The spacecraft will send back data pretty quickly to let us know if the maneuver itself was successful, and it'll be exciting to see images from the sampling event, which should be sent back within a day."

The papers describe the detailed characterization of the surface using images, spectroscopy (composition) and thermal measurements. Emery summarizes each of the four papers he co-authored:

Widespread carbon-bearing materials on near-Earth asteroid (101955) Bennu, published in Science: "OSIRIS-REx spectrometer data show absorptions ("fingerprints") of complex organic molecules and carbonate minerals on Bennu's surface. These materials do not appear to be spatially correlated to any specific geologic features or other compositions, but they are widespread across the surface. These data provide the first concrete detection of carbon-bearing materials on a near-Earth asteroid. The presence of organics on Bennu suggests that asteroids like Bennu may have brought organic molecules to Earth."

Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history, published in Science: "Detailed analysis of absorption features in OSIRIS-REx spectrometer data indicate that there are carbonates on Bennu and that these carbonates are similar to those found in certain meteorites.

"Images of Bennu show that some of the rocks contain bright veins that may be carbonate. Carbonates, and their occurrence in large abundance, mean that fluid flow and hydrothermal deposition on Bennu's parent body would have occurred over distances of kilometers for thousands to millions of years - conditions that suggest large-scale, open-system hydrothermal alteration of carbonaceous asteroids in the early solar system."

Asteroid (101955) Bennu's weak boulders and thermally anomalous equator, published in Science Advances: "By measuring and mapping the temperature of the surface of Bennu at different times of day, we can see how different rocks heat up and cool down, which enables us to determine physical properties of the surface rocks. This analysis distinguishes two boulder populations on Bennu that differ in thermal inertia (resistance to changes in temperature) and strength.

Both have lower thermal inertia and inferred strength than expected for boulders and meteorites. The weaker boulder type probably would not survive atmospheric entry and thus may not be represented in the meteorite collection. Our findings imply that other NEAs likely have boulders similar to those on Bennu, rather than finer-particulate regoliths."

Heterogenous mass distribution of the rubble-pile asteroid (101955) Bennu, published in Science Advances: "We measured the gravity field of Bennu in great detail using the OSIRIS-REx spacecraft trajectory and by mapping the orbits of small particles ejected from Bennu's surface. The gravity field provides insight into the interior structure of Bennu. These data show that Bennu does not have a uniform interior. Bennu's center appears to have a lower density than its average. The equatorial bulge also has a relatively low density. The lower-density equator is consistent with recent movement of material to the equator. The lower-density center suggests that Bennu used to spin much faster than its current 4.29 period 'day'."

"It's been such thrill and honor to be part of the OSIRIS-REx team," Emery said. "As lead of the thermal analysis working group, it has been very exciting for me to be very involved in planning the observations the spacecraft has made in preparation for sampling and then figuring out from the data what the surfaces is like. The rocks on Bennu look strange, and we found from the thermal data that they are so weak that we could easily crush them in our hands.

"Still, they have existed on this asteroid for over a billion years! These rocks also contain complex organic molecules that form naturally in space, and asteroids like Bennu could have brought these organic molecules to Earth billions of years ago to seed the beginnings of life. When the sample is returned to Earth, scientists will be able to study these molecules in exquisite detail."

Emery, who joined NAU in 2019, applies the techniques of astronomical reflection and emission spectroscopy and spectrophotometry of primitive and icy bodies in the near- (0.8 to 5.0 microns) and mid-infrared (5 to 50 microns) to investigate the formation and evolution of the Solar System and the distribution of organic material.

The Jupiter Trojan asteroids have been a strong focus of his research, and he also regularly observes Kuiper Belt objects, icy satellites and other asteroid groups to understand the state of their surfaces as related to these topics. In addition to contributing to Solar System exploration as a science team member on the OSIRIS-REx asteroid sample return mission, he also collaborated on the upcoming Lucy Trojan asteroid flyby mission and the NEO Surveyor Mission infrared telescope mission.

Links to the four papers:

+ Research paper 1
+ Research paper 2
+ Research paper3
+ Research paper 4


Related Links
Northern Arizona University
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
GMV to carry out the development phase of the GNC system to guide the HERA mission
Madrid, Spain (SPX) Sep 30, 2020
On 15 September, the European Space Agency (ESA) signed with the German company OHB the 129.4-million euro contract covering the detailed design, manufacturing, and testing of the HERA mission. This mission, ESA's first ever planetary defense mission, will be Europe's contribution to an international asteroid deflection effort carried out jointly with NASA and due for lift-off in October 2024. The contract takes in the complete design of the interplanetary probe, integration and tests, including a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Simulated satellite rendezvous at ESA

ISS crew analyses dust movement to locate air leak in Russian Module

From Thales to space

Chief Engineer, Deborah Crane Talks Commercial Crew Launch

IRON AND ICE
Testing a fiery reentry at DLR

ISRO plans to launch new rocket before Dec 2020

Georgia Southern University Shows Massive Tourism Boom for Spaceport Camden

NASA runs eight-part core stage Green Run Test for SLS

IRON AND ICE
Mars at its biggest and brightest until 2035

Preserved dune fields offer insights into Martian history

The way forward to Mars

AI helps scientists discover fresh craters on Mars

IRON AND ICE
Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

IRON AND ICE
Corrective measures needed from satellite "mega-constellation" operators

First space census launches today

Clean and greener tennis using space technology

Despite pandemic-related setbacks, the NewSpace industry has new players enter the field

IRON AND ICE
Satellite Industry Association releases space traffic management recommendations and white paper

Kongsberg awarded contract for mobile communication satellite

On the trail of causes of radiation events during space flight

Ultrasensitive microwave detector developed

IRON AND ICE
Some planets may be better for life than Earth

Searching for the chemistry of life

New research explores how super flares affect planets' habitability

First direct observation of exoplanet Beta Pictoris c

IRON AND ICE
Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.