. 24/7 Space News .
IRON AND ICE
Planetary Defense exercise uses Apophis as Hazardous Asteroid Stand-In
by Staff Writers
Pasadena CA (JPL) Jun 01, 2022

Asteroid Apophis.

Watching the skies for large asteroids that could pose a hazard to the Earth is a global endeavor. So, to test their operational readiness, the international planetary defense community will sometimes use a real asteroid's close approach as a mock encounter with a "new" potentially hazardous asteroid. The lessons learned could limit, or even prevent, global devastation should the scenario play out for real in the future.

To that end, more than 100 astronomers from around the world participated in an exercise last year in which a large, known, and potentially hazardous asteroid was essentially removed from the planetary defense-monitoring database to see whether it could be properly detected anew. Not only was the object "discovered" during the exercise, its chances of hitting Earth were continually reassessed as it was tracked, and the possibility of impact was ruled out.

Coordinated by the International Asteroid Warning Network (IAWN) and NASA's Planetary Defense Coordination Office (PDCO), the exercise confirmed that, from initial detection to follow-up characterization, the international planetary defense community can act swiftly to identify and assess the hazard posed by a new near-Earth asteroid discovery. The results of the exercise are detailed in a study published in the Planetary Science Journal on Tuesday, May 31.

The exercise focused on the real asteroid Apophis. For a short while after its discovery in 2004, Apophis was assessed to have a significant chance of impacting Earth in 2029 or later. But based on tracking measurements taken during several close approaches since the asteroid's discovery, astronomers have refined Apophis' orbit and now know that it poses no impact hazard whatsoever for 100 years or more. Scientific observations of Apophis' most recent close approach, which occurred between December 2020 and March 2021, were used by the planetary defense community for this exercise.

"This real-world scientific input stress-tested the entire planetary defense response chain, from initial detection to orbit determination to measuring the asteroid's physical characteristics and even determining if, and where, it might hit Earth," said Vishnu Reddy, associate professor at the University of Arizona's Lunar and Planetary Laboratory in Tucson, who led the campaign.

Tracking a 'New' Target
Astronomers knew Apophis would approach Earth in early December 2020. But to make the exercise more realistic, the Minor Planet Center (MPC) - the internationally recognized clearinghouse for the position measurements of small celestial bodies - pretended that it was an unknown asteroid by preventing the new observations of Apophis from being connected with previous observations of it. When the asteroid approached, astronomical surveys had no prior record of Apophis.

On Dec. 4, 2020, as the asteroid started to brighten, the NASA-funded Catalina Sky Survey in Arizona made the first detection and reported the object's astrometry (its position in the sky) to the Minor Planet Center. Because there was no prior record of Apophis for the purpose of this exercise, the asteroid was logged as a brand-new detection. Other detections followed from the Hawaii-based, NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) and Panoramic Survey Telescope and Rapid Response System (Pan-STARRS).

As Apophis drifted into the field of view of NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) mission, the MPC linked its observations with those made by ground-based survey telescopes to show the asteroid's motion through the sky. On Dec. 23, the MPC announced the discovery of a "new" near-Earth asteroid. Exercise participants quickly gathered additional measurements to assess its orbit and whether it could impact Earth.

"Even though we knew that, in reality, Apophis was not impacting Earth in 2029, starting from square one - with only a few days of astrometric data from survey telescopes - there were large uncertainties in the object's orbit that theoretically allowed an impact that year," said Davide Farnocchia, a navigation engineer at NASA's Jet Propulsion Laboratory in Southern California, who led the orbital determination calculations for JPL's Center for Near Earth Object Studies (CNEOS).

During the asteroid's March 2021 close approach, JPL astronomers used NASA's 230-foot (70-meter) Goldstone Solar System Radar in California to image and precisely measure the asteroid's velocity and distance. These observations, combined with measurements from other observatories, enabled astronomers to refine Apophis' orbit and rule out a 2029 impact for the purpose of the exercise. (Beyond the exercise, they also were able to rule out any chance of impact for 100 years or more.)

NEOWISE Homes In
Orbiting far above Earth's atmosphere, NEOWISE provided infrared observations of Apophis that would be not have been possible from the ground because moisture in the Earth's atmosphere absorbs light at these wavelengths.

"The independent infrared data collected from space greatly benefited the results from this exercise," said Akash Satpathy, an undergraduate student who led a second paper with NEOWISE Principal Investigator Amy Mainzer at the University of Arizona, describing the results with inclusion of their data in the exercise. "NEOWISE was able to confirm Apophis' rediscovery while also rapidly gathering valuable information that could be used in planetary defense assessments, such as its size, shape, and even clues as to its composition and surface properties."

By better understanding the asteroid's size, participating scientists at NASA's Ames Research Center in Silicon Valley, California, could also estimate the impact energy that an asteroid like Apophis would deliver. And the participants simulated a swath of realistic impact locations on Earth's surface that, in a real situation, would help disaster agencies with possible evacuation efforts.

"Seeing the planetary defense community come together during the latest close approach of Apophis was impressive," said Michael Kelley, a program scientist with PDCO, within NASA's Planetary Science Division at NASA Headquarters in Washington, who provided guidance to the exercise participants. "Even during a pandemic, when many of the exercise participants were forced to work remotely, we were able to detect, track, and learn more about a potential hazard with great efficiency. The exercise was a resounding success."

Additional key planetary defense exercise working group leads included Jessie Dotson at NASA Ames, Nicholas Erasmus at the South African Astronomical Observatory, David Polishook at the Weizmann Institute in Israel, Joseph Masiero at Caltech-IPAC in Pasadena, and Lance Benner at JPL, a division of Caltech.

NEOWISE's successor, the next-generation NEO Surveyor, is scheduled to launch no earlier than 2026 and will greatly expand the knowledge NEOWISE has amassed about the near-Earth asteroids that populate our solar system.

More information about CNEOS, asteroids, and near-Earth objects can be found here

Research Report:Apophis Planetary Defense Campaign


Related Links
Planetary Defense Coordination Office
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Dwarf planet Ceres was formed in coldest zone of Solar System and thrust into Asteroid Belt
Sao Paulo, Brazil (SPX) May 18, 2022
In an article published in the journal Icarus, researchers at Sao Paulo State University (UNESP) and collaborators report the findings of a study reconstituting the formation of the dwarf planet Ceres. The research was conducted by Rafael Ribeiro de Sousa, a professor in the program of graduate studies in physics on the Guaratingueta campus. The co-authors of the article are Ernesto Vieira Neto, who was Ribeiro de Sousa's PhD thesis advisor, and researchers affiliated with Cote d'Azur University in Fran ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NASA Moon Mission Set to Break Record in Navigation Signal Test

Bill Nelson, Mark Kelly praise how ASU involves students in missions

NASA awards two contracts for next generation spacesuits

Bezos's Blue Origin makes 5th crewed flight into space

IRON AND ICE
Subscale booster motor for future Artemis missions fires up at Marshall

NASA rolls SLS moon rocket back out to Kennedy Space Center launch pad

Ursa Major announces new engine to replace unavailable Russian-made engines

Southern Launch receives further Government funding

IRON AND ICE
Perseverance Has a Pet Rock!

Perseverance now selects its own targets to zap

A steep but short climb: Sols 3491-3492

Bacterial cellulose enables microbial life on Mars

IRON AND ICE
Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

China sends three astronauts to Tiangong Space Station

Shenzhou XIV astronauts transporting supplies into space station

IRON AND ICE
China launches nine Geely-01 satellites

Axiom Space signs MOU with Italy to expand commercial utilization of space

Omnispace Spark-2 satellite launched into orbit

OneWeb satellite to be deorbited at the end of its active lifetime

IRON AND ICE
SCOUT and LEOcloud collaborate on next gen space domain awareness services

Mitsubishi Electric develops innovative laser comms terminal

Liquid platinum at room temperature

Ancient ocean floors could help search for critical minerals

IRON AND ICE
Geology from 50 light-years away

Close encounter more than 10,000 years ago stirred up spirals in accretion disk

Plato's cave: vacuum test for exoplanet detection

Extraterrestrial civilizations may colonize the Galaxy even if they don't have starships

IRON AND ICE
Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.