. 24/7 Space News .
Close encounter more than 10,000 years ago stirred up spirals in accretion disk
by Staff Writers
Shanghai, China (SPX) Jun 03, 2022

A schematic view of the history of the accretion disk and the intruding object. The three plots starting from the bottom left are snapshots from the numerical simulation, depicting the system at the time of the flyby event, 4000 years later, and 8000 years after that, respectively. The top right image is from the ALMA observations, showing the disk with spirals and two objects around it, corresponding to the system 12,000 years after the flyby event.

Dr. LU Xing, an associate researcher from the Shanghai Astronomical Observatory (SHAO) of the Chinese Academy of Sciences, along with collaborators from Yunnan University, the Harvard-Smithsonian Center for Astrophysics, and the Max Planck Institute, have used high-resolution observational data from the Atacama Large Millimeter/submillimeter Array (ALMA) to discover a massive protostellar disk in the Galactic Center and determine how its spiral arms were formed.

The group's research shows that this disk was perturbed by close encounter with a nearby object, thus leading to the formation of the spiral arms. This finding demonstrates that the formation of massive stars may be similar to that of lower-mass stars, through accretion disks and flybys.

The results were published in Nature Astronomy on May 30.

During the formation of stars, accretion disks arise around newborn stars. These accretion disks, also known as "protostellar disks," are an essential component in star formation. Accretion disks continuously feed gas into protostars from the environment. In this sense, they are stellar cradles where stars are born and raised.

For massive protostars, especially early O-type ones of more than 30 solar masses, however, the role of accretion disks in their formation has not been clear.

At a distance of about 26,000 light years from Earth, the Galactic Center is a unique and important star-forming environment. Besides the supermassive black hole Sgr A*, the Galactic Center contains a huge reservoir of dense molecular gas, mostly in the form of molecular hydrogen (H2), which is the raw material for star formation. The gas starts to form stars once gravitational collapse is initiated.

However, the environment in the Galactic Center is unique, with strong turbulence and strong magnetic fields as well as tidal forces from Sgr A*, all of which substantially affect star formation in this region.

Since the distance between the Galactic Center and Earth is huge and complicated foreground contaminations exist, direct observations of star-forming regions around the Galactic Center have been challenging.

The research team led by Dr. LU used ALMA's long baseline observations to achieve a resolution of 40 milliarcseconds. To get an idea how fine that resolution is, it would allow an observer in Shanghai to easily spot a football in Beijing.

With these high-resolution, high-sensitivity ALMA observations, the researchers discovered an accretion disk in the Galactic Center. The disk has a diameter of about 4,000 astronomical units and surrounds a forming, early O-type star with a mass about 32 times that of the Sun. This system is among the most massive protostars with accretion disks and represents the first direct imaging of a protostellar disk in the Galactic Center.

The discovery suggests that massive early-O type stars go through a formation phase involving accretion disks, and this conclusion is valid for the unique environment of the Galactic Center.

What is more interesting is that the disk clearly displays two spiral arms. Such arms are often found in spiral galaxies but are rarely seen in protostellar disks. In general, spiral arms emerge in accretion disks due to fragmentation induced by gravitational instability. However, the disk discovered in this research is hot and turbulent, thus making it able to balance its own gravity.

In trying to explain this phenomenon, the researchers proposed an alternate explanation-that the spirals were induced by external perturbation. The researchers proposed this explanation after detecting an object of about three solar masses-possibly the source of the external perturbation-several thousand astronomical units away from the disk.

To verify this proposition, the researchers calculated several dozen possible orbits of this object. They found that only one of these orbits could perturb the disk to the observed level. They subsequently carried out a numerical simulation on the high-performance supercomputing platform of the Shanghai Astronomical Observatory to trace the trajectory of the intruding object. The scientists were able to successfully reproduce the entire history of the object flying by the disk more than 10,000 years ago, when it would have stirred up spirals in the disk.

"The nice match among analytical calculations, the numerical simulation, and the ALMA observations provides robust evidence that the spiral arms in the disk are relics of the flyby of the intruding object," said Dr. LU.

This finding clearly demonstrates that accretion disks at early evolutionary stages of star formation are subject to frequent dynamic processes such as flybys and these processes can substantially influence the formation of stars and planets.

Interestingly, flybys may have occurred in our own solar system too: A binary stellar system known as Scholz's Star flew by the solar system about 70,000 years ago, probably penetrating through the Oort cloud and sending comets to the inner solar system.

The current study suggests that for more massive stars, especially in the high-stellar-density environment around the Galactic Center, such flybys should also be frequent. "The formation of this massive protostar is similar to its lower-mass cousins like the Sun, with accretion disks and flyby events involved. Although stellar masses are different, certain physical mechanisms in star formation could be the same. This provides important clues to solving the mystery of massive star formation," said Dr. LU.

Research Report:A massive Keplerian protostellar disk with flyby-induced spirals in the Central Molecular Zone

Related Links
Shanghai Astronomical Observatory
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Plato's cave: vacuum test for exoplanet detection
Paris (ESA) Jun 02, 2022
A test version of the payload module of ESA's exoplanet-detecting Plato spacecraft underwent a prolonged vacuum soak within Europe's largest thermal vacuum chamber, to evaluate its endurance of space conditions. There are tasks in space where multiple smaller imagers are better than one big equivalent. ESA PLAnetary Transits and Oscillations of stars mission, Plato, is to detect Earth-scale exoplanets using an array of 26 cameras to perform prolonged observations of target stars. This combination ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA Moon Mission Set to Break Record in Navigation Signal Test

Bill Nelson, Mark Kelly praise how ASU involves students in missions

NASA awards two contracts for next generation spacesuits

Bezos's Blue Origin makes 5th crewed flight into space

Subscale booster motor for future Artemis missions fires up at Marshall

NASA rolls SLS moon rocket back out to Kennedy Space Center launch pad

Ursa Major announces new engine to replace unavailable Russian-made engines

Southern Launch receives further Government funding

Perseverance Has a Pet Rock!

Perseverance now selects its own targets to zap

A steep but short climb: Sols 3491-3492

Bacterial cellulose enables microbial life on Mars

Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

China sends three astronauts to Tiangong Space Station

Shenzhou XIV astronauts transporting supplies into space station

China launches nine Geely-01 satellites

Axiom Space signs MOU with Italy to expand commercial utilization of space

Omnispace Spark-2 satellite launched into orbit

OneWeb satellite to be deorbited at the end of its active lifetime

SCOUT and LEOcloud collaborate on next gen space domain awareness services

Mitsubishi Electric develops innovative laser comms terminal

Liquid platinum at room temperature

Ancient ocean floors could help search for critical minerals

Geology from 50 light-years away

Close encounter more than 10,000 years ago stirred up spirals in accretion disk

Plato's cave: vacuum test for exoplanet detection

Extraterrestrial civilizations may colonize the Galaxy even if they don't have starships

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.