24/7 Space News
STELLAR CHEMISTRY
Physicists embark on six-year hunt for dark matter particle
Researchers will utilize quantum technologies to develop one of the world's most sensitive detectors ever built.
ADVERTISEMENT
Physicists embark on six-year hunt for dark matter particle
by Staff Writers
Espoo, Finland (SPX) Oct 31, 2023

In the pitch dark of the cosmos lurks an invisible kind of matter. Its presence is seen in the rippling ebb and flow of galaxies, but it's never been directly observed. What secrets lie beneath the surface, brewing in the deep?

Physicists have long theorized about the composition of dark matter, which is thought to be five times more abundant than regular matter. Among competing hypotheses, one particle has emerged as a promising candidate: the axion.

Researchers at Aalto University are setting out on a six-year project to find evidence for the existence of axions. They will do so as part of a newly founded consortium called DarkQuantum, alongside researchers at the University of Zaragoza, who are coordinating the project, as well as researchers at the French National Centre for Scientific Research, Karlsruhe Institute of Technology, and other partner institutions.

This new consortium will be the first to use the latest quantum technologies to build sensors with unprecedented scanning sensitivity. DarkQuantum was awarded euro 12.9 million on October 26 by the European Research Council, of which roughly euro 2 million is set aside for Aalto University Senior Lecturer and Docent Sorin Paraoanu and his Superconducting Qubits and Circuit QED (KVANTTI) research group.

'We are peering into a deep, dark pit. If it exists, the axion goes beyond the standard model of elementary particles,' Paraoanu says. 'Such an observation would be comparable in significance to the Higgs boson discovery in the early 2010s. But at least with the Higgs boson, they knew where to start looking!'

'The nature of dark matter is one of the biggest mysteries in modern science,' adds University of Zaragoza Professor Igor Garcia Irastorza, who also heads the DarkQuantum consortium. 'If dark matter is made of axions, we have a real chance of detecting it with this project.'

Although there have been attempts to observe axions in the past, this latest endeavor will capitalize on quantum phenomena to enable researchers to better filter out noise and repeat their experiments with greater fidelity. That's where Paraoanu and his team come in.

Moving mountains
Zoom into our small corner of the Milky Way galaxy, deep under the mountains spanning the border between Spain and France. This is the site of the Canfranc Underground Laboratory, which will house a high-frequency sensor the DarkQuantum researchers plan to build. The other, low-frequency sensor will be located at the German Electron Synchrotron (DESY) in Hamburg.

Paraoanu and his KVANTTI group are primarily responsible for building and tuning the high-frequency sensor, as well as writing the algorithms and software to use it. This sensor, called a haloscope, will probe the depths of the galactic halo in search of axions.

Putting the sensor deep underground helps eliminate cosmic background radiation, and it may offer a unique opportunity to simultaneously study certain noise-reduction techniques for quantum computing.

'Our high-frequency sensor will be 10-100 times more sensitive than previous iterations, and it will be able to scan on the scale of a few microelectron volts. It will use superconducting qubits-the same qubits used in quantum computers-but they will serve in a different role as detectors in this haloscope,' Paraoanu says.

Previous attempts to detect axions have used linear amplifiers, which tend to introduce noise and effectively absorb particles into the system. Paraoanu's sensor will rely on quantum nondemolition measurements, which will allow for repeated experiments with the same particles.

'The theory suggests that, in an ultra-cold environment, we can introduce a magnetic field that will cause any axions present to decay into photons. If we detect any photons in the cavity, then we can conclude that axions are present in the system, and that they do indeed exist,' Paraoanu says.

Synergy Grant
The European Research Council's Synergy Grant is prestigious, and Paraoanu and his team are only the second in Aalto University's history to receive the grant-the first was awarded to Professor Risto Ilmoniemi for his ongoing ConnectToBrain project.

The six-year project will be broken into two parts: a four-year scaling up phase, which includes the construction, tuning and transportation of the haloscopes; and a two-year experimental phase, in which the team will gather data. Paraoanu expects to have openings for several researcher positions in the project in the coming years.

Other partner institutions named in the Synergy Grant include the Max Planck Society for the Advancement of the Sciences, the Polytechnic University of Cartagena, and the Spanish National Research Council.

Related Links
Aalto University
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Pulsars may make dark matter glow
Amsterdam, Netheralnds (SPX) Oct 09, 2023
The central question in the ongoing hunt for dark matter is: what is it made of? One possible answer is that dark matter consists of particles known as axions. A team of astrophysicists, led by researchers from the universities of Amsterdam and Princeton, has now shown that if dark matter consists of axions, it may reveal itself in the form of a subtle additional glow coming from pulsating stars. Dark matter may be the most sought-for constituent of our universe. Surprisingly, this mysterious form ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
Russian space boss warns ISS equipment beyond warranty

Putin says first segment of ISS replacement to orbit by 2027

NASA improves GIANT optical navigation technology for future missions

UK and Axiom sign agreement on plans for historic human spaceflight mission

STELLAR CHEMISTRY
Nighttime rehearsal for Ariane 6 towards first flight

New US rocket Vulcan Centaur set to launch on December 24

Rocket Lab receives FAA authorization to resume launches

UK plans space mission after striking deal with US firm

STELLAR CHEMISTRY
Mystery of the Martian core solved

Ascending Fang Turret: Sols 3991-3993

Sampling unique bedrock at the margin unit

Short but Sweet; Sols 3987-3988

STELLAR CHEMISTRY
China discloses tasks of Shenzhou-17 crewed space mission

Shenzhou 17 docks with Tiangong Space Station

China able, ready to invite foreign astronauts to its space station

China launches new mission to space station

STELLAR CHEMISTRY
Follow NASA's Starling Swarm in Real Time

Fugro SpAARC's operations set to grow with new funding from Western Australian Govt

French Space Days India 2023 celebrates Indo-French collaboration

Urban Sky announces $9.75M Series A funding round

STELLAR CHEMISTRY
The tech to recycle clothes is only just being invented

Space rocks and asteroid dust are pricey, but these aren't the most expensive materials used in science

DLR and Tesat laser terminal paves way for high-speed data transfer from space

Shape-shifting fiber can produce morphing fabrics

STELLAR CHEMISTRY
ET phone Dublin? Astrophysicists scan the Galaxy for signs of life

Exoplanet-informed research helps search for radio technosignatures

Webb detects tiny quartz crystals in clouds of hot gas giant

Extreme habitats: Microbial life in Old Faithful Geyser

STELLAR CHEMISTRY
How NASA is protecting Europa Clipper from space radiation

NASA's Webb Discovers New Feature in Jupiter's Atmosphere

Plot thickens in hunt for ninth planet

Large mound structures on Kuiper belt object Arrokoth may have common origin

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.