24/7 Space News
How NASA is protecting Europa Clipper from space radiation
Engineers and technicians are seen closing the vault of NASA's Europa Clipper in the main clean room of the Spacecraft Assembly Facility at the agency's Jet Propulsion Laboratory in Southern California on Oct. 7, 2023. The vault will protect the sophisticated electronics of the spacecraft as it orbits Jupiter and endures one of the most punishing radiation environments in our solar system.
How NASA is protecting Europa Clipper from space radiation
by Pat Brennan for JPL News
Pasadena CA (JPL) Oct 25, 2023

To explore the mysterious ice-encrusted moon Europa, the mission will need to endure bombardment by radiation and high-energy particles surrounding Jupiter.

When NASA's Europa Clipper begins orbiting Jupiter to investigate whether its ice-encased moon, Europa, has conditions suitable for life, the spacecraft will pass repeatedly through one of the most punishing radiation environments in our solar system.

Hardening the spacecraft against potential damage from that radiation is no easy task. But on Oct. 7, the mission put the final piece of the spacecraft's "armor" in place when it sealed the vault, a container specially designed to shield Europa Clipper's sophisticated electronics. The probe is being put together, piece by piece, in the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory in Southern California ahead of its launch in October 2024.

"Closing the vault is a major milestone," said Kendra Short, Europa Clipper's deputy flight system manager at JPL. "It means we've got everything in there that we have to have in there. We're ready to button it up."

Just under a half-inch (1 centimeter) thick, the aluminum vault houses the electronics for the spacecraft's suite of science instruments. The alternative of shielding each set of electronic parts individually would add cost and weight to the spacecraft.

"The vault is designed to reduce the radiation environment to acceptable levels for most of the electronics," said JPL's Insoo Jun, the co-chair of the Europa Clipper Radiation Focus Group and an expert on space radiation.

Punishing Radiation
Jupiter's gigantic magnetic field is 20,000 times as strong as Earth's and spins rapidly in time with the planet's 10-hour rotation period. This field captures and accelerates charged particles from Jupiter's space environment to create powerful radiation belts. The radiation is a constant, physical presence - a kind of space weather - bombarding everything in its sphere of influence with damaging particles.

"Jupiter has the most intense radiation environment other than the Sun in the solar system," Jun said. "The radiation environment is affecting every aspect of the mission."

That's why when the spacecraft arrives at Jupiter in 2030, Europa Clipper won't simply park in orbit around Europa. Instead, like some previous spacecraft that studied the Jovian system, it will make a wide-ranging orbit of Jupiter itself to move away from the planet and its harsh radiation as much as possible. During those looping orbits of the planet, the spacecraft will fly past Europa nearly 50 times to gather scientific data.

The radiation is so intense that scientists believe it modifies the surface of Europa, causing visible color changes, said Tom Nordheim, a planetary scientist at JPL who specializes in icy outer moons - Europa as well as Saturn's Enceladus.

"Radiation on the surface of Europa is a major geologic modification process," Nordheim said. "When you look at Europa - you know, the reddish-brown color - scientists have shown that this is consistent with radiation processing."

Chaotic Icescape
So even as engineers work to keep radiation out of Europa Clipper, scientists like Nordheim and Jun hope to use the space probe to study it.

"With a dedicated radiation monitoring unit, and using opportunistic radiation data from its instruments, Europa Clipper will help reveal the unique and challenging radiation environment at Jupiter," Jun said.

Nordheim zeroes in on Europa's "chaos terrain," areas where blocks of surface material appear to have broken apart, rotated, and moved into new positions, in many cases preserving preexisting linear fracture patterns.

Deep beneath the moon's icy surface is a vast liquid-water ocean, scientists believe, that could offer a habitable environment for life. Some areas of Europa's surface show evidence of material transport from the subsurface to the surface. "We need to understand the context of how radiation modified that material," Nordheim said. "It can alter the chemical makeup of the material."

The Power of Heat
Because Europa's ocean is locked inside an envelope of ice, any possible life forms would not be able to rely directly on the Sun for energy, as plants do on Earth. Instead, they'd need an alternative energy source, such as heat or chemical energy. Radiation raining down on Europa's surface could help provide such a source by creating oxidants, such as oxygen or hydrogen peroxide, as the radiation interacts with the surface ice layer.

Over time, these oxidants could be transported from the surface to the interior ocean. "The surface could be a window into the subsurface," Nordheim said. A better understanding of such processes could provide a key to unlock more of the Jupiter system's secrets, he added: "Radiation is one of the things that makes Europa so interesting. It's part of the story."

Video: Spacecraft Makers: Europa Clipper

Related Links
Europa at NASA
The million outer planets of a star called Sol

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
NASA's Webb Discovers New Feature in Jupiter's Atmosphere
Baltimore MD (SPX) Oct 20, 2023
Jupiter has some of the most conspicuous atmospheric features in our solar system. The planet's Great Red Spot, large enough to envelop Earth, is nearly as well known as some of the various rivers and mountains on the planet we call home. However, much like Earth, Jupiter is ever-changing, and there's much about the planet we have yet to learn. NASA's James Webb Space Telescope is unlocking some of those mysteries, revealing new features of Jupiter we've never seen before, including a high-speed j ... read more

UK and Axiom sign agreement on plans for historic human spaceflight mission

CRS-29 mission flies research to the Space Station

India launches key test for manned orbital mission

NASA improves GIANT optical navigation technology for future missions

'No prospects': Russians slowly leaving legendary spaceport city

SpaceX Achieves Back-to-Back Starlink Satellite Launches to Expand Global Internet Coverage

UK plans space mission after striking deal with US firm

New US rocket Vulcan Centaur set to launch on December 24

Sampling unique bedrock at the margin unit

Year 2075: Martian rovers saved from cyber attack

Mystery of the Martian core solved

Short but Sweet; Sols 3987-3988

China discloses tasks of Shenzhou-17 crewed space mission

Next-generation rocket for China's manned space missions on track

Final rehearsal for Shenzhou XVII flight completed

Chinese sci-fi fans over the moon at Chengdu Worldcon

Fugro SpAARC's operations set to grow with new funding from Western Australian Govt

French Space Days India 2023 celebrates Indo-French collaboration

Follow NASA's Starling Swarm in Real Time

Launch of Ovzon 3 targeted for as soon as December 2023

Researchers developing 'revolutionary' multi-material for light-based 3D printing

Tightbeam tech set to revolutionize Global Marine Internet through Aalyria-HICO Partnership

NASA's First Two-way End-to-End Laser Communications System

Light-powered multi-level memory tech revolutionizes data processing

ET phone Dublin? Astrophysicists scan the Galaxy for signs of life

Exoplanet-informed research helps search for radio technosignatures

Webb detects tiny quartz crystals in clouds of hot gas giant

Extreme habitats: Microbial life in Old Faithful Geyser

How NASA is protecting Europa Clipper from space radiation

NASA's Webb Discovers New Feature in Jupiter's Atmosphere

Plot thickens in hunt for ninth planet

Large mound structures on Kuiper belt object Arrokoth may have common origin

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.