24/7 Space News
TECH SPACE
Physicists coax superconductivity and more from quasicrystals
SPX stock illustration only
Physicists coax superconductivity and more from quasicrystals
by Elizabeth A. Thomson | Materials Research Laboratory
Boston MA (SPX) Oct 12, 2023

In research that could jump-start interest into an enigmatic class of materials known as quasicrystals, MIT scientists and colleagues have discovered a relatively simple, flexible way to create new atomically thin versions that can be tuned for important phenomena. In work reported in a recent issue of Nature, they describe doing just that to make the materials exhibit superconductivity and more.

The research introduces a new platform for not only learning more about quasicrystals, but also exploring exotic phenomena that can be hard to study but could lead to important applications and new physics. For example, a better understanding of superconductivity, in which electrons pass through a material with no resistance, could allow much more efficient electronic devices.

The work brings together two previously unconnected fields: quasicrystals and twistronics. The latter is the specialty of Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT and corresponding author of the new Nature paper, whose "magic-angle" graphene breakthrough in 2018 jump-started the field.

"It's really extraordinary that the field of twistronics keeps making unexpected connections to other areas of physics and chemistry, in this case the beautiful and exotic world of quasiperiodic crystals," says Jarillo-Herrero, who is also affiliated with MIT's Materials Research Laboratory and the MIT Research Laboratory of Electronics.

Do the twist
Twistronics involves atomically thin layers of materials placed on top of one another. Rotating, or twisting, one or more of the layers at a slight angle creates a unique pattern called a moire superlattice. And a moire pattern, in turn, has an impact on the behavior of electrons. "It changes the spectrum of energy levels available to the electrons and can provide the conditions for interesting phenomena to arise," says Sergio C. de la Barrera, one of four co-first authors of the recent paper. De la Barrera, who conducted the work while a postdoc at MIT, is now an assistant professor at the University of Toronto.

A moire system can also be tailored for different behaviors by changing the number of electrons added to the system. As a result, the field of twistronics has exploded over the last five years as researchers around the world have applied it to creating new atomically thin quantum materials. Examples from MIT alone include:

+ Turning a moire material known as magic-angle twisted bilayer graphene into three different - and useful - electronic devices. (The scientists involved in that work, reported in 2021, included Daniel Rodan-Legrain, a co-first author of the current work and an MIT postdoc in physics. They were led by Jarillo-Herrero.)

+ Engineering a new property, ferroelectricity, into a well-known family of semiconductors. (The scientists involved in that work, reported in 2021, were led by Jarillo-Herrero.)

+ Predicting exotic new magnetic phenomena, complete with a "recipe" for realizing them. (The scientists involved in that work, reported in 2023, included MIT professor of physics Liang Fu and Nisarga Paul, an MIT graduate student in physics. Both Fu and Paul are co-authors of the current paper.)

Toward new quasicrystals
In the current work, the researchers were tinkering with a moire system made of three sheets of graphene. Graphene is composed of a single layer of carbon atoms arranged in hexagons resembling a honeycomb structure. In this case, the team layered three sheets of graphene on top of one another, but twisted two of the sheets at slightly different angles.

To their surprise, the system created a quasicrystal, an unusual class of material discovered in the 1980s. As the name implies, quasicrystals are somewhere between a crystal, such as a diamond, that has a regular repeating structure, and an amorphous material, like glass, "where the atoms are all jumbled, or randomly arranged," says de la Barrera. In a nutshell, quasicrystals "have really strange patterns," de la Barrera says (see some examples here).

Compared to crystals and amorphous materials, however, relatively little is known about quasicrystals. That's in part because they're hard to make. "That doesn't mean they're not interesting; it just means that we haven't paid as much attention to them, particularly to their electronic properties," says de la Barrera. The new platform, which is relatively simple, could change that.

Learning more
Because the original researchers weren't experts in quasicrystals, they reached out to someone who is: Professor Ron Lifshitz of Tel Aviv University. Aviram Uri, one of the co-first authors of the paper and an MIT Pappalardo and VATAT Postdoctoral Fellow, was a student of Lifshitz's during his undergraduate studies at Tel Aviv and knew about his work on quasicrystals. Lifshitz, who is also an author of the Nature paper, helped the team to better understand what they were looking at, which they call a moire quasicrystal.

The physicists then tuned a moire quasicrystal to make it superconducting, or transmit current with no resistance at all below a certain low temperature. That's important because superconducting devices could transfer current through electronic devices much more efficiently than is possible today, but the phenomenon is still not fully understood in all cases. The new moire quasicrystal system brings a new way to study it.

The team also found evidence of symmetry breaking, another phenomenon that "tells us that the electrons are interacting with one another very strongly. And as physicists and quantum material scientists, we want our electrons interacting with each other because that's where the exotic physics happens," de la Barrera says.

In the end, "through discussions across continents we were able to decipher this thing, and now we believe we have a good handle on what's going on," says Uri, although he notes that "we don't yet fully understand the system. There are still quite a few mysteries."

The best part of the research was "solving the puzzle of what it was we had actually created," de la Barrera says. "We were expecting [something else], so it was a very pleasant surprise when we realized we were actually looking at something very new and different."

"It's the same answer for me," says Uri.

Additional authors of the Nature paper are MIT professor of physics Raymond C. Ashoori; Mallika T. Randeria, a researcher at MIT Lincoln Laboratory who conducted the work as a Pappalardo Fellow at MIT and is another co-first author of the paper; Trithep Devakul, an assistant professor at Stanford University who conducted the work as a postdoc at MIT; Philip J. D. Crowley, a postdoc at Harvard University; and Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan.

This work was funded by the U.S. Army Research Office, the U.S. National Science Foundation, the Gordon and Betty Moore Foundation, a MIT Pappalardo Fellowship, a VATAT Outstanding Postdoctoral Fellowship in Quantum Science and Technology, the JSPS KAKENHI, and the Israel Science Foundation.

Related Links
Materials Research Laboratory
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
$9.5 bn of key metals in overlooked electronic waste: UN
Paris (AFP) Oct 11, 2023
Consumers discard or possess disused electronic goods containing raw materials critical for the green energy transition and worth almost $10 billion every year, the United Nations said on Thursday. Toys, cables, electronic cigarettes, tools, electric toothbrushes, shavers, headphones and other domestic gadgets contain metals like lithium, gold, silver and copper. Demand is expected to soar for these materials due to their crucial role in rapidly growing green industries such as electric vehicle ... read more

TECH SPACE
Space needs better 'parking spots' to stay usable

Law professor calls for ethical approach to human experiments in space

Ethics rules needed for human research on commercial spaceflights, panel says

Ethical guidelines needed before human research in commercial spaceflight is ready for liftoff

TECH SPACE
EU warns Musk's X spreading 'illegal' disinfo after Hamas attack

Orbit Fab appoints Chief Engineer, advances refueling system test capabilities

Rocket Lab opens engine development center in Long Beach

Vega-C Zefiro40 Test: Independent Enquiry

TECH SPACE
Bumping to a Better Position: Sols 3973-3974

Light rocks on deck, gray rocks in the hole: Sols 3966-3697

NASA's Perseverance captures dust-filled Martian whirlwind

Double DRT for a Soliday: Sols 3964-3965:

TECH SPACE
Astronauts honored for contributions to China's space program

China capable of protecting astronauts from effects of space weightlessness

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

TECH SPACE
Amazon's Project Kuiper takes flight with first satellite launch

Amazon Gears Up for Inaugural Satellite Launch of Project Kuiper

Momentus announces $4M direct offering priced at-the-market under Nasdaq rules

Study quantifies satellite brightness, challenges ground-based astronomy

TECH SPACE
Physicists coax superconductivity and more from quasicrystals

$9.5 bn of key metals in overlooked electronic waste: UN

Spire Global selected by accelerate digitalization across the maritime industry

Making more magnetism possible with topology

TECH SPACE
James Webb telescope captures planet-like structures in Orion Nebula

Study sheds new light on strange lava worlds

JWST's first spectrum of a TRAPPIST-1 planet

Alien Machines in the Solar System: The Possibilities and Potential Origins

TECH SPACE
Large mound structures on Kuiper belt object Arrokoth may have common origin

Plot thickens in the hunt for a ninth planet

Webb finds carbon source on surface of Jupiter's moon Europa

Hidden ocean the source of CO2 on Jupiter moon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.