24/7 Space News
Study sheds new light on strange lava worlds
File illustration of 55 Cancri e.
Study sheds new light on strange lava worlds
by Staff Writers
Columbus OH (SPX) Sep 27, 2023

Lava worlds, massive exoplanets home to sparkling skies and roiling volcanic seas called magma oceans, are distinctly unlike the planets in our solar system.

To date, nearly 50% of all rocky exoplanets yet discovered have been found capable of maintaining magma on their surfaces, likely because these planets are so close to their host stars they orbit in fewer than 10 days. Being so close causes the planet to be bombarded by harsh weather and forces surface temperatures to the extreme, making it all but completely inhospitable to life as we know it today.

Now, in a new study, scientists have shown that these sweeping molten oceans have a large influence on the observed properties of hot rocky Super-Earths, such as their size and evolutionary path.

Their research, published recently in The Astrophysical Journal, found that due to lava's extremely compressible nature, oceans of magma can cause lava-rich planets without atmospheres to be modestly denser than similarly sized solid planets as well as impact the structure of their mantles, the thick inner layer that surrounds a planet's core.

Even so, since these objects are notoriously under-studied, it can be a difficult task to characterize the fundamental workings of lava planets, said Kiersten Boley, lead author of the study and a graduate student in astronomy at The Ohio State University.

"Lava worlds are very odd, very interesting things and because of the way we detect exoplanets, we're more biased to finding them," said Boley, whose research revolves around understanding what essential ingredients makes exoplanets unique and how tweaking those elements, or in the case of lava worlds, their temperatures, can completely change them.

One of the most well-known of these mysterious burning worlds is 55 Cancri e, an exoplanet about 41 light-years away that scientists describe as home to both sparkling skies and roiling lava seas.

While there are objects in our solar system, such as Jupiter's moon Io, that are extremely volcanically active, there aren't true lava planets in our stretch of the cosmos that scientists can get up close and personal to study. However, investigating how the composition of magma oceans contributes to the evolution of other planets, such as for how long they stay molten and for what reasons they eventually cool down, can offer clues into Earth's own fiery history, said Boley.

"When planets initially form, particularly for rocky terrestrial planets, they go through a magma ocean stage as they're cooling down," said Boley. "So lava worlds can give us some insight into what may have happened in the evolution of nearly any terrestrial planet."

Using the exoplanet interior modeler software Exoplex and data collected from previous studies to construct a module that included information on several types of magma compositions, researchers simulated several evolutionary scenarios of an Earth-like planet with surface temperatures from between 2600 and 3860 degrees Fahrenheit - the melting point at which the planet's solid mantle would turn to liquid.

From the models they created, the team was able to discern that mantles of magma ocean planets can take on one of three forms: the first in which the entire mantle is completely molten, the second where a magma ocean lies on the surface, and a third sandwich-esque model that consists of a magma ocean at the surface, a solid rock layer in the middle and another layer of molten magma that lies closest to the planet's core.

The results suggest that the second and third forms are slightly more common than planets that are completely molten. Depending on the composition of magma oceans, some atmosphere-free exoplanets are better than others at trapping volatile elements - compounds such as oxygen and carbon necessary to the formation of early atmospheres - for billions of years.

For example, the study notes that a basal magma class planet that is 4 times more massive than Earth can trap more than 130 times the mass of water than in Earth's oceans today, and about 1,000 times the amount of carbon currently present in the planet's surface and crust.

"When we're talking about the evolution of a planet and its potential to have different elements that you would need to support life, being able to trap a lot of volatile elements within their mantles could have greater implications for habitability," said Boley.

Lava planets are a long way from becoming habitable enough to support life, but it's important to understand the processes that help these worlds to get there. Nevertheless, this study makes clear that measuring their density isn't exactly the best way to characterize these worlds when comparing them to solid exoplanets as a magma ocean neither significantly increases nor decreases its planet's density, said Boley.

Instead, their research reveals that scientists should focus on other terrestrial parameters such as fluctuations in a planet's surface gravity to test their theories about how hot lava worlds operate, especially if future researchers plan on using their data to aid in larger planetary studies.

"This work, which is a combination of earth sciences and astronomy, basically opens up exciting new questions about lava worlds," said Boley.

Research Report:Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds

Related Links
Ohio State University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
JWST's first spectrum of a TRAPPIST-1 planet
Ann Arbor MI (SPX) Sep 27, 2023
In a solar system called TRAPPIST-1, 40 light years from the sun, seven Earth-sized planets revolve around a cold star. Astronomers obtained new data from the James Webb Space Telescope (JWST) on TRAPPIST-1 b, the planet in the TRAPPIST-1 solar system closest to its star. These new observations offer insights into how its star can affect observations of exoplanets in the habitable zone of cool stars. In the habitable zone, liquid water can still exist on the orbiting planet's surface. The team, wh ... read more

Law professor calls for ethical approach to human experiments in space

Ethics rules needed for human research on commercial spaceflights, panel says

Ethical guidelines needed before human research in commercial spaceflight is ready for liftoff

Global team recommends ethical rules for human research in commercial spaceflight

Record-breaking launch of SpaceX's Starlink satellites

Maritime Launch unveils commercial suborbital program at Spaceport Nova Scotia

Blue Origin to remain grounded for now following crash probe

All engines added to NASA's Artemis II core stage

Dust removal delayed: Sols 3962-3963

Double DRT for a Soliday: Sols 3964-3965:

NASA's Perseverance captures dust-filled Martian whirlwind

Curiosity Needs an Altitude Adjustment: Sols 3955-3956

Astronauts honored for contributions to China's space program

China capable of protecting astronauts from effects of space weightlessness

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

Sierra Space increases total investment to $1.7B with $290M Series B Funding

Arlington Capital Partners to acquire Exostar from Thoma Bravo

Intelsat expands Brazil infrastructure, delivers new services

Eutelsat and OneWeb combination world's first GEO-LEO Operator

Material matters

German tech factory reveals antenna prototype-ngVLA will open a new window into the Universe

Ukraine says strike in Russia's Kursk region took out high-tech radar system

Zenno and D-to develop superconducting electromagnets

Study sheds new light on strange lava worlds

JWST's first spectrum of a TRAPPIST-1 planet

Possible hints of life found on distant planet - how excited should we be?

A newly identified virus emerges from the deep

Plot thickens in the hunt for a ninth planet

Webb finds carbon source on surface of Jupiter's moon Europa

Hidden ocean the source of CO2 on Jupiter moon

Juice: why's it taking sooo long

Subscribe Free To Our Daily Newsletters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.