. 24/7 Space News .
TECH SPACE
Orion "Passengers" on Artemis I to test radiation vest for deep space missions
by Staff Writers
Houston TX (SPX) Feb 14, 2020

The ISA will provide the AstroRad vest for the mission, which was developed by an Israeli company called StemRad in collaboration with Orion lead contractor, Lockheed Martin. The DLR will provide the phantoms and the majority of the radiation detectors, with further contributions by universities from around the world.

As NASA leads the way for human exploration at the Moon and beyond, space radiation is one of the biggest hazards crews face. In 2018, NASA signed an agreement with the Israel Space Agency (ISA) and the German Aerospace Center (DLR) for an experiment to test the AstroRad radiation protection vest on Artemis I, the first flight test of the Space Launch System (SLS) rocket and Orion spacecraft. The investigation, called the Matroshka AstroRad Radiation Experiment (MARE), will provide valuable data on radiation levels during missions to the Moon while testing the effectiveness of the new vest. Artemis missions at the Moon will pave the way for human exploration of Mars.

Earth's atmosphere and magnetic shielding protect us from most of the radiation in the universe, including radiation from our Sun. When astronauts leave Earth, they're exposed to the full spectrum of radiation present in deep space. The Artemis I mission will not carry crew, but two identical mannequin torsos equipped with radiation detectors. They will fly aboard Orion during the three-week mission, traveling about 280,000 miles from Earth and thousands of miles beyond the Moon.

The mannequins, called phantoms, are manufactured from materials that mimic human bones, soft tissues, and organs of an adult female. Their names are Helga and Zohar and, despite sharing the trip, their missions will be different - Zohar will wear the AstroRad vest, while Helga will not. Female forms were chosen because women typically have greater sensitivity to the effects of space radiation, but the AstroRad vest is designed to protect both men and women.

The phantoms have a three-centimeter grid embedded throughout the torsos that will enable scientists to map internal radiation doses to areas of the body that contain critical organs. With two identical torsos, scientists will be able to determine how well the new vest might protect crew from solar radiation, while also collecting data on how much radiation astronauts might experience inside Orion on a lunar mission - conditions that cannot be recreated on Earth.

The ISA will provide the AstroRad vest for the mission, which was developed by an Israeli company called StemRad in collaboration with Orion lead contractor, Lockheed Martin. The DLR will provide the phantoms and the majority of the radiation detectors, with further contributions by universities from around the world.

In a related investigation currently underway on the International Space Station, the Comfort and Human Factors AstroRad Radiation Garment Evaluation (CHARGE) study will assess the ergonomics, range of motion, comfort and general user experience of the AstroRad vest in a microgravity environment. Insights from the study will help improve the fit and function of the vest.

MARE builds upon previous experiments performed on the space station using phantoms and other instruments to measure radiation exposure in low-Earth orbit. Astronauts on station are exposed to radiation levels about 50 times higher than that experienced by people on Earth. Farther from Earth's magnetic field and into interplanetary space, the level of radiation exposure during exploration missions could be much higher - up to 150 times more. Human beings exposed to large amounts of radiation can experience both acute and chronic health problems ranging from immediate radiation sickness to developing cancer in the future.

Orion was designed to protect both humans and hardware during radiation events on Artemis missions. For example, in the event of a solar flare, Orion's crew can take cover in the central part of the crew module, between the floor and the heat shield, using the stowage bags on board to improve shelter. However, the crew may have to stay in such a shelter for more than a day. With a protective vest to help block solar energetic particles, crew could continue working during critical mission activities in spite of a solar storm.

Orion will also have different types of radiation sensors on board to record both the peak level of radiation exposure during the flight, as well as radiation levels throughout the mission. Researchers can then compare the data with mission telemetry to reveal where and when the radiation was encountered. While the AstroRad vest is designed primarily to protect against solar energetic particles that are ejected from the sun during a solar eruption, researchers are also developing and evaluating ways to shield crew from galactic cosmic rays, another type of radiation that comes from all over the galaxy and is more challenging to protect against.

With the data from MARE and other sensors, NASA and its partners will improve their ability to prepare for, and limit the effects of, radiation exposure as human beings travel farther into space on longer missions. Reducing the risks due to radiation exposure is important for missions that could last as long as three months at the Gateway outpost in lunar orbit, and future missions to Mars, currently estimated to be a three year round-trip journey.

NASA is working to land the first woman and next man on the Moon by 2024 as part of the agency's Artemis program. Orion, the Space Launch System rocket and the Gateway are part of NASA's backbone for deep space exploration. Through the agency's broader Moon to Mars exploration approach, NASA will establish a sustainable presence at the Moon and prepare for humanity's next giant leap, sending astronauts to Mars.


Related Links
Matroshka AstroRad Radiation Experiment (MARE)
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Researchers develop smaller, lighter radiation shielding
Raleigh NC (SPX) Feb 13, 2020
Researchers at North Carolina State University have developed a new technique for shielding electronics in military and space exploration technology from ionizing radiation. The new approach is more cost effective than existing techniques, and the secret ingredient is...rust. "Our approach can be used to maintain the same level of radiation shielding and reduce the weight by 30% or more, or you could maintain the same weight and improve shielding by 30% or more - compared to the most widely used s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Space station to forge ultra-fast connections

Software defects could have destroyed Boeing Starliner on test flight

'Pale Blue Dot' Revisited

Northrop postpones Antares rocket launch in Virginia on Sunday

TECH SPACE
Australian Govt funds rocket fuel tank research

NASA, Europe space agency launch Solar Orbiter mission

Economical and environmentally friendly solutions on the commercial satellites market

Artemis I progresses toward launch

TECH SPACE
Mars 2020 equipped with laser vision and better mics

Mars 2020 rover goes coast-to-coast to prep for launch

SwRI models hint at longer timescale for Mars formation

Salt water may periodically form on the surface of Mars

TECH SPACE
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

TECH SPACE
Understanding the impact of satellite constellations on astronomy

Maxar Technologies will build Intelsat Epic geostationary communications satellite with NASA hosted payload

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

Australia's first space incubator seeks global applicants for 2020 program

TECH SPACE
Researchers develop smaller, lighter radiation shielding

Making 3-D printing smarter with machine learning

NASA prepares for Moon and Mars with new addition to its deep space network

Astroscale teams with JAXA for Commercial Removal of Debris Demonstration Project

TECH SPACE
Distant giant planets form differently than 'failed stars'

CHEOPS space telescope takes its first pictures

Scientists discover nearest known 'baby giant planet'

Scientists pick up pattern of space radio signals for 1st time, study says

TECH SPACE
Pluto's icy heart makes winds blow

Why Uranus and Neptune are different

Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.