. 24/7 Space News .
SHAKE AND BLOW
Oregon scientists decipher the magma bodies under Yellowstone
by Staff Writers
Eugene OR (SPX) Apr 22, 2018

illustration only

Using supercomputer modeling, University of Oregon scientists have unveiled a new explanation for the geology underlying recent seismic imaging of magma bodies below Yellowstone National Park.

Yellowstone, a supervolcano famous for explosive eruptions, large calderas and extensive lava flows, has for years attracted the attention of scientists trying to understand the location and size of magma chambers below it. The last caldera forming eruption occurred 630,000 years ago; the last large volume of lava surfaced 70,000 years ago.

Crust below the park is heated and softened by continuous infusions of magma that rise from an anomaly called a mantle plume, similar to the source of the magma at Hawaii's Kilauea volcano. Huge amounts of water that fuel the dramatic geysers and hot springs at Yellowstone cool the crust and prevent it from becoming too hot.

With computer modeling, a team led by UO doctoral student Dylan P. Colon has shed light on what's going on below. At depths of 5-10 kilometers (3-6 miles) opposing forces counter each other, forming a transition zone where cold and rigid rocks of the upper crust give way to hot, ductile and even partially molten rock below, the team reports in a paper in Geophysical Research Letters.

This transition traps rising magmas and causes them to accumulate and solidify in a large horizontal body called a sill, which can be up to 15 kilometers (9 miles) thick, according to the team's computer modeling.

"The results of the modeling matches observations done by sending seismic waves through the area," said co-author Ilya Bindeman, a professor in the UO's Department of Earth Sciences. "This work appears to validate initial assumptions and gives us more information about Yellowstone's magma locations."

This mid-crustal sill is comprised of mostly solidified gabbro, a rock formed from cooled magma. Above and below lay separate magma bodies. The upper one contains the sticky and gas-rich rhyolitic magma that occasionally erupts in explosions that dwarf the 1980 eruption of Mount St. Helens in Washington state.

Similar structures may exist under super volcanoes around the world, Colon said. The geometry of the sill also may explain differing chemical signatures in eruptive materials, he said.

Colon's project to model what's below the nation's first national park, which was sculpted 2 million years ago by volcanic activity, began soon after a 2014 paper in Geophysical Research Letters by a University of Utah-led team revealed evidence from seismic waves of a large magma body in the upper crust.

Scientists had suspected, however, that huge amounts of carbon dioxide and helium escaping from the ground indicated that more magma is located farther down. That mystery was solved in May 2015, when a second University of Utah-led study, published in the journal Science, identified by way of seismic waves a second, larger body of magma at depths of 20 to 45 kilometers (12-27 miles).

However, Colon said, the seismic-imaging studies could not identify the composition, state and amount of magma in these magma bodies, or how and why they formed there.

To understand the two structures, UO researchers wrote new codes for supercomputer modeling to understand where magma is likely to accumulate in the crust. The work was done in collaboration with researchers at the Swiss Federal Institute of Technology, also known as ETH Zurich.

The researchers repeatedly got results indicating a large layer of cooled magma with a high melting point forms at the mid-crustal sill, separating two magma bodies with magma at a lower melting point, much of which is derived from melting of the crust.

"We think that this structure is what causes the rhyolite-basalt volcanism throughout the Yellowstone hotspot, including supervolcanic eruptions," Bindeman said. "This is the nursery, a geological and petrological match with eruptive products. Our modeling helps to identify the geologic structure of where the rhyolitic material is located."

The new research, for now, does not help to predict the timing of future eruptions. Instead, it provides a never-before-seen look that helps explain the structure of the magmatic plumbing system that fuels these eruptions, Colon said. It shows where the eruptible magma originates and accumulates, which could help with prediction efforts further down the line.

"This research also helps to explain some of the chemical signatures that are seen in eruptive materials," Colon said. "We can also use it to explore how hot the mantle plume is by comparing models of different plumes to the actual situation at Yellowstone that we understand from the geologic record."

Colon is now exploring what influences the chemical composition of magmas that erupt at volcanoes like Yellowstone.

Studying the interaction of rising magmas with the crustal transition zone, and how this influences the properties of the magma bodies that form both above and below it, the scientists wrote, should boost scientific understanding of how mantle plumes influence the evolution and structure of continental crust.

Research paper


Related Links
University of Oregon
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SHAKE AND BLOW
Volcano erupts in Japan, no-go warning issued
Tokyo (AFP) April 19, 2018
A volcano erupted in southern Japan on Thursday, spewing steam and ash hundreds of metres into the air, as authorities warned locals not to approach the mountain. "It was confirmed that rocks fell because of the eruption" near Mount Io, part of the Mount Kirishima group of volcanoes, said Makoto Saito, an official of the meteorological agency. "There is a possibility that (the volcano) will become more active," he told reporters, warning people to stay away from the volcano as major ash deposits ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Philippines to deploy riot police for Boracay tourist closure

Top tomatoes thanks to Mars missions

Growing Plants in Antarctica 'Open Way' for Distant Space Missions - Analyst

First Steps to Space: Yuri Gagarin's Military Service Archive Declassified

SHAKE AND BLOW
ISRO not facing funds crunch: Chairman K.Sivan

Alaska Aerospace Clarifies Commercial Aerospace Plans For Kodiak

Boeing HorizonX Invests in Reaction Engines, a UK Hypersonic Propulsion Company

NEXT-C Advanced Electric Propulsion Engine Cleared to Begin Production

SHAKE AND BLOW
Trace Gas Orbiter reaches stable Mars orbit, ready to start science mission

Mars impact crater or supervolcano?

The Rock Outcrop 'Tome' Continues to Garner Interest On Mars

Mars Express to get major software update

SHAKE AND BLOW
Flowers on the Moon? China's Chang'e-4 to launch lunar spring

China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

SHAKE AND BLOW
Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

SHAKE AND BLOW
'Artificial mole' could warn of cancer: study

New type of opal formed by common seaweed discovered

Flat gallium joins roster of new 2-D materials

Polymer-graphene nanocarpets to electrify smart fabrics

SHAKE AND BLOW
We think we're the first advanced earthlings - but how do we really know?

Newly discovered salty subglacial lakes could help search for life in solar system

SPHERE Reveals Fascinating Zoo of Discs Around Young Stars

A Cosmic Gorilla Effect Could Blind the Detection of Aliens

SHAKE AND BLOW
Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole

SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.