. | . |
AFRL repairs next generation composite materials with light by Donna Lindne for AFRL News Wright-Patterson AFB OH (SPX) Sep 29, 2020
Scientists at the Air Force Research Laboratory and Hanyang University are developing smart structural composites that are robust and photothermally responsive, enabling next generation composite materials that are repairable with the application of light sources. This is a joint collaboration between the United States and South Korea with participation of AFRL and Hanyang University through collaborative sponsorship of the Air Force Office of Scientific Research and the National Research Foundation of Korea. "This partnership has helped us to leverage resources and accelerate our technology development," said Professor Youngjong Kang of Hanyang University. "We are developing an evolving and transformative materials technology that enables real-time system readiness and cost savings in the area of system sustainment and electromagnetic interference (EMI) shielding," said Dr. Dhriti Nepal, Research Materials Engineer, of AFRL. The structural damage repair in traditional epoxy composites is time-consuming and labor-intensive. Component downtime during repair also adds to loss of squadron readiness, in addition to excessive labor-intensive repair cost. Traditional epoxy thermosets are infusible and unable to be remolded. It is nearly impossible to repair without completely replacing the entire component. The development of smart photothermally activated composites repair via light activation adaptable to non-invasive (practically eliminating human touch labor) provides a significant breakthrough in sustainment of aircraft systems. This enables exceedingly low-cost repair. This technology and EMI shielding have the potential to transition the research to system applications to meet warfighter needs. Vitrimer materials, otherwise known as a class of plastics derived from thermosetting polymers, is one solution to providing a material that will alleviate issues related to mechanical repair. Vitrimer properties can be tailored to incorporate electrospray ionization (high voltage applied to a liquid to create an aerosol) shielding. "Prime aerospace industry members see an immediate need for this technology for significant cost savings and boosted system readiness," said Dr. Ajit Roy, Principal Material Research Engineer, of AFRL. "We are excited to experiment on the development of new generation nanoparticles incorporated into composites to meet application requirements for filled elastomer (a semi-flexible polymer that is added in between structural components to fill component gaps and to provide electrical connectivity) and EMI shielding. To coincide with the development, Dr. Yixin Ren and Dr. Amber Hubbard of AFRL recently participated in a "Science as Art Competition" at the 2020 Spring Materials Research Society meeting. Ren's "Carbon Nano Shish Kabob," showing carbon nanotubes' growth on carbon fibers, was awarded in the top 50 of the competition. Hubbard's "(Thermoplastic) Flower in the Sun," showing a system that can transform films into 3D shapes based on a photothermal response, won second place. Fundamental technical challenges remain to be worked to make the technology insertion to Air Force systems happen; however, a cohesive and productive multidisciplinary team is in place to advance this important and scientifically relevant technology.
Chromium steel was first made in ancient Persia London UK (SPX) Sep 23, 2020 Chromium steel - similar to what we know today as tool steel - was first made in Persia, nearly a millennium earlier than experts previously thought, according to a new study led by UCL researchers. The discovery, published in the Journal of Archaeological Science, was made with the aid of a number of medieval Persian manuscripts, which led the researchers to an archaeological site in Chahak, southern Iran. The findings are significant given that material scientists, historians and archaeolo ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |