. 24/7 Space News .
TIME AND SPACE
No matter the size of a nuclear party, some protons and neutrons will pair up and dance
by Jennifer Chu, MIT News Office
Boston MA (SPX) Nov 10, 2020

An MIT-led team simulated the behavior of protons and neutrons in several types of atomic nuclei, finding that the formulas describing how atoms behave in a gas can be generalized to predict how protons and neutrons interact at close range in the nucleus.

Atoms in a gas can seem like partiers at a nanoscopic rave, with particles zipping around, pairing up, and flying off again in seemingly random fashion. And yet physicists have come up with formulas that predict this behavior, even when the atoms are extremely close together and can tug and pull on each other in complicated ways.

The environment within the nucleus of a single atom seems similar, with protons and neutrons also dancing about. But because the nucleus is such a compact space, scientists have struggled to pin down the behavior of these particles, known as nucleons, in an atom's nucleus. Models that describe the interactions of nucleons that are far apart break down when the particles pair up and interact at close range.

Now an MIT-led team has simulated the behavior of protons and neutrons in several types of atomic nuclei, using some of the most powerful supercomputers in the world. The team explored a wide range of nuclear interaction models and found, surprisingly, that the formulas describing how atoms behave in a gas can be generalized to predict how protons and neutrons interact at close range in the nucleus.

When nucleons are less than 1 femtometer - 1 quadrillionth of a meter - apart, the researchers found another surprise: The particles pair up in the same way, regardless of whether they inhabit a small nucleus like helium or a more crowded one like calcium.

"These short-range pairs don't really care about their environment - whether they're in a huge party or a party of five, it doesn't matter - they will pair up in the same universal way," says Reynier Cruz-Torres, who co-led the work as a physics graduate student at MIT.

This short-range behavior is likely universal for all types of atomic nuclei, such as the much denser, complicated nuclei in radioactive atoms.

"People did not expect this type of model would capture nuclei, which are some of the most complicated objects in physics," says Or Hen, assistant professor of physics at MIT. "Despite a more than 20 orders of magnitude difference in density between an atom and nucleus, we can still find this universal behavior and apply it to many open problems in nuclear physics."

The team has published their results in the journal Nature Physics. MIT co-authors include Axel Schmidt, a research affiliate in the Laboratory for Nuclear Science, along with collaborators from the Hebrew University, Los Alamos and Argonne National Laboratories, and various other institutions.

Party pairs
Hen seeks to understand the messy interactions between protons and neutrons at extremely short range, where the pull and tug between nucleons in the very small, dense environment of the nucleus has been notoriously difficult to pin down. For years, he has wondered whether a concept in atomic physics known as contact formalism could also apply to nuclear physics and the inner workings of the nucleus.

Very broadly, contact formalism is a general mathematical description that proves the behavior of atoms in a cloud depends on their scale: Those that are far from each other follow a certain physics, while atoms very close together follow an entirely separate set of physics. Each group of atoms goes about their interactions oblivious to the behavior of the other group. According to contact formalism, for instance, there will always be a certain number of ultraclose pairs, regardless of what other, more distant atoms are doing in the cloud.

Hen wondered whether contact formalism might also describe the interactions within an atom's nucleus.

"I thought that it cannot be that you see this beautiful formalism, that has been a revolution in atomic physics, and yet we can't make it work for nuclear physics," Hen says. "It was just too much of a connection."

"On human scales"
The researchers first teamed with Ronen Weiss and Nir Barnea at Hebrew University, who led the development of a theoretical generalization of atomic contact formalism, to describe a general system of interacting particles. They then looked to simulate particles in a small, dense, nuclear environment, to see whether patterns of behavior would emerge among short-range nucleons, in an entirely separate way from that of long-range nucleons as predicted by the generalized contact formalism.

The group simulated particle interactions within several light atomic nuclei, ranging from three nucleons in helium, to 40 in calcium. For each type of atomic nucleus, they ran a random sampling algorithm to generate a movie of where each of the protons and neutrons in a given nucleus might be over time.

"At a certain timeshot, these particles may be distributed one way, interacting among themselves with a given scheme, where this one pairs with that one, for instance, and a third particle get kicked instead. Then, at another timeshot, they will be distributed differently," explains co-lead author Diego Lonardoni, a physicist at Los Alamos National Laboratory and Michigan State University. "So we repeat these calculations again and again to reach equilibrium."

To see any sort of equilibrium, or pattern, emerge, the team had to simulate all the possible physics between each and every particle, generating thousands of snapshots for each type of nucleus. To carry out this number of calculations normally would take millions of hours of processing time.

"It would take my laptop more than the age of the universe to finish the calculation," Hen says. "If you distribute the calculation among 10,000 processors, you can get your result in a time on human scales."

So the team used supercomputers at Los Alamos and at Argonne National Laboratory - some of the most powerful computers in the world - to distribute the work in parallel.

After running the simulations, they plotted a distribution of nucleons for each type of nucleus they simulated. For instance, for an oxygen nucleus, they found a certain percentage of nucleons within 1 fermi apart, and another percentage that were slightly closer, and so on.

Surprisingly, they found that, for long-range nucleons, the distribution varied widely from one type of nucleus to another. But for short-range nucleons that were less than 1 femtometer apart, the distributions across atomic types looked exactly the same, no matter if the nucleons inhabited an ultralight helium nucleus or a denser carbon nucleus. In other words, short-range nucleons behaved independently of their larger-scale environment, similar to how atomic behavior is described through contact formalism.

"Our finding offers a new and simple way to nail down the short-distance part of the nuclear distribution that, together with existing theory, allows essentially getting the full distribution," Hen says. "With that, we can test the nature of the neutrino and calculate the cooling rates of neutron stars, among other open questions."

Research Report: "Many-body factorization and position-momentum equivalence of nuclear short-range correlations"


Related Links
Massachusetts Institute Of Technology
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists work to shed light on Standard Model of particle physics
Lemont IL (SPX) Nov 06, 2020
As scientists await the highly anticipated initial results of the Muon g-2 experiment at the U.S. Department of Energy's (DOE) Fermi National Accelerator Laboratory, collaborating scientists from DOE's Argonne National Laboratory continue to employ and maintain the unique system that maps the magnetic field in the experiment with unprecedented precision. Argonne scientists upgraded the measurement system, which uses an advanced communication scheme and new magnetic field probes and electronics to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Twenty years on Station leads to multiple advances on Earth

ISS to preserve cooperation, Roscosmos Head says on 20th anniversary of crewed operations

NASA contacts Voyager 2 using upgraded Deep Space Network Dish

China's Mars probe completes third orbital correction

TIME AND SPACE
Sounding Rocket to See What Keeps Intergalactic Space Sizzling

ESA lays out roadmap to Ariane 6 and Vega-C flights

Rocket Lab launches 15th Mission - deploys sats Planet and Canon

Rockets need intelligence booster, say engineers

TIME AND SPACE
Water on ancient Mars

Geologists simulate soil conditions to help grow plants on Mars

NASA's Perseverance Rover Is Midway to Mars

Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

TIME AND SPACE
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

TIME AND SPACE
Kleos team complete final prep for Scouting Mission launch Nov 7

Globalsat Group successfully tests Iridium Edge Pro

Budding space entrepreneurs wow industry experts

ESA Masterclass full series: Leadership at Mission Control

TIME AND SPACE
Optimizing the design of new materials

Monitoring open-cast mines better than before

3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

Portrait transmitted via 3D printing

TIME AND SPACE
Assessing the habitability of planets around old red dwarfs

About Half of Sun-Like Stars Could Host Rocky, Potentially Habitable Planets

Comets Had Impact in the Start of Life on Earth

Mars-sized rogue planet found drifting through the Milky Way

TIME AND SPACE
Where were Jupiter and Saturn born?

NASA's Webb To Examine Objects in the Graveyard of the Solar System

Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.