. 24/7 Space News .
Optimizing the design of new materials
by Staff Writers
Evanston IL (SPX) Nov 09, 2020

New approach determines optimal materials designs with minimal data

Northwestern University researchers have developed a new computational approach to accelerate the design of materials exhibiting metal-insulator transitions (MIT), a rare class of electronic materials that have shown potential to jumpstart future design and delivery of faster microelectronics and quantum information systems - foundational technologies behind Internet of Things devices and large-scale data centers that power how humans work and interact with others.

The new strategy, a collaboration between Professors James Rondinelli and Wei Chen, integrated techniques from statistical inference, optimization theory, and computational materials physics. The approach combines multi-objective Bayesian optimization with latent-variable Gaussian processes to optimize ideal features in a family of MIT materials called complex lacunar spinels.

When researchers search for new materials, they typically look in places where existing data on similar materials already exists. The design of many classes of materials properties have been accelerated in existing works with data-driven methods aided by high-throughput data generation coupled with methods like machine learning.

Such approaches, however, have not been available for MIT materials, categorized by their ability to reversibly switch between electrically conducting and insulating states. Most MIT models are constructed to describe a single material, making generation of the models often challenging.

At the same time, conventional machine learning methods have shown limited predictive capability because of the absence of available data, making the design of new MIT materials difficult.

"Researchers understand how to distill information from large materials datasets where it exists and when suitable features are available," said Rondinelli, professor of materials science and engineering and the Morris E. Fine Professor in Materials and Manufacturing at the McCormick School of Engineering, and corresponding author of the study.

"But what do you do when you don't have large datasets or the necessary features? Our work disrupts this status quo by building predicative and explorative models without requiring large datasets or features starting from a small dataset."

A paper describing the work, titled "Featureless Adaptive Optimization Accelerates Functional Electronic Materials Design," was published on November 6 in the journal Applied Physics Review.

The research team's method, called advanced optimization engine (AOE), bypasses traditional machine learning-based discovery models by using a latent variable Gaussian process modeling approach, which only requires the chemical compositions of materials to discern their optimum nature.

This allowed the Bayesian optimization-based AOE to efficiently search for materials with optimal band gap (electrical resistivity/conductivity) tunability and thermal stability (synthesizability) - two defining features for useful materials.

To validate their approach, the team analyzed hundreds of chemical combinations using density function theory-based simulations and found 12 previously unidentified compositions of complex lacunar spinels that showed optimal functionality and synthesizability. These MIT materials are known to host unique spin textures, a necessary feature to power the future Internet of Things and other resource-intensive technologies.

"This advance overcomes traditional limitations imposed by chemical intuition-based materials designs," said Chen, Wilson-Cook Professor in Engineering Design and professor and chair of mechanical engineering, and a co-author on the study.

"By reframing functional materials design as an optimization problem, we have not only found a solution to the challenge of working with limited data, but also demonstrated the ability to efficiently discover optimal new materials for future electronics."

While the researchers tested their method on inorganic materials, they believe the approach can also be applied to organic materials, such as the design of protein sequences in biomaterials or monomer sequences in polymeric materials. The model also offers guidance on making better decisions toward the optimal design of materials by choosing ideal candidate compounds to simulate.

"Our method paves the way forward for optimization of multiple properties and the co-design of complex multifunctional materials where prior data and knowledge is sparse," Rondinelli said.

Work on this study was born from a project exploring Bayesian optimization in materials discovery within the Predictive Science and Engineering Design (PSED) interdisciplinary cluster program sponsored by The Graduate School at Northwestern.

It was supported by funding from the National Science Foundation and the Advanced Research Projects Agency - Energy's (ARPA-E) DIFFERENTIATE program, which seeks to use emerging AI technologies to tackle major energy and environmental challenges.

"This work highlights the impact of the collaborative PSED interdisciplinary design cluster," Chen said. "It also emphasizes the crucial advances occurring in AI and machine learning at Northwestern in design and optimization."

Research paper

Related Links
Northwestern University
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Industrial-strength brine, meet your kryptonite
Houston TX (SPX) Nov 04, 2020
A thin coating of the 2D nanomaterial hexagonal boron nitride is the key ingredient in a cost-effective technology developed by Rice University engineers for desalinating industrial-strength brine. More than 1.8 billion people live in countries where fresh water is scarce. In many arid regions, seawater or salty groundwater is plentiful but costly to desalinate. In addition, many industries pay high disposal costs for wastewater with high salt concentrations that cannot be treated using convention ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA contacts Voyager 2 using upgraded Deep Space Network Dish

China's Mars probe completes third orbital correction

After 20 years, Glenn continues to support the ISS

Cygnus delivers slew of research programs to Space Station

Sounding Rocket to See What Keeps Intergalactic Space Sizzling

ESA lays out roadmap to Ariane 6 and Vega-C flights

Rocket Lab launches 15th Mission - deploys sats Planet and Canon

Rockets need intelligence booster, say engineers

Geologists simulate soil conditions to help grow plants on Mars

NASA's Perseverance Rover Is Midway to Mars

Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

Leonardo at work on robotic arms for the NASA and ESA Mars Sample Return mission

China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

Kleos team complete final prep for Scouting Mission launch Nov 7

Globalsat Group successfully tests Iridium Edge Pro

Budding space entrepreneurs wow industry experts

ESA Masterclass full series: Leadership at Mission Control

Monitoring open-cast mines better than before

3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

Price, date, games... PlayStation 5 and Xbox Series X

Portrait transmitted via 3D printing

Assessing the habitability of planets around old red dwarfs

About Half of Sun-Like Stars Could Host Rocky, Potentially Habitable Planets

Comets Had Impact in the Start of Life on Earth

Mars-sized rogue planet found drifting through the Milky Way

Where were Jupiter and Saturn born?

NASA's Webb To Examine Objects in the Graveyard of the Solar System

Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.