. 24/7 Space News .
TIME AND SPACE
Scientists work to shed light on Standard Model of particle physics
by Savannah Mitchem
Lemont IL (SPX) Nov 06, 2020

Typical magnetic field variations as mapped by the trolley at different positions in the Muon g-2 experiment's storage ring, shown at the parts-per-million level.

As scientists await the highly anticipated initial results of the Muon g-2 experiment at the U.S. Department of Energy's (DOE) Fermi National Accelerator Laboratory, collaborating scientists from DOE's Argonne National Laboratory continue to employ and maintain the unique system that maps the magnetic field in the experiment with unprecedented precision.

Argonne scientists upgraded the measurement system, which uses an advanced communication scheme and new magnetic field probes and electronics to map the field throughout the 45-meter circumference ring in which the experiment takes place.

"There was a large deviation between Brookhaven's measurement and the theoretical prediction, and if we confirm this discrepancy, it will signal the existence of undiscovered particles." - Simon Corrodi, postdoctoral appointee in Argonne's HEP division

The experiment, which began in 2017 and continues today, could be of great consequence to the field of particle physics. As a follow-up to a past experiment at DOE's Brookhaven National Laboratory, it has the power to affirm or discount the previous results, which could shed light on the validity of parts of the reigning Standard Model of particle physics.

High-precision measurements of important quantities in the experiment are crucial for producing meaningful results. The primary quantity of interest is the muon's g-factor, a property that characterizes magnetic and quantum mechanical attributes of the particle.

The Standard Model predicts the value of the muon's g-factor very precisely. "Because the theory so clearly predicts this number, testing the g-factor through experiment is an effective way to test the theory," said Simon Corrodi, a postdoctoral appointee in Argonne's High Energy Physics (HEP) division. "There was a large deviation between Brookhaven's measurement and the theoretical prediction, and if we confirm this discrepancy, it will signal the existence of undiscovered particles."

Just as the Earth's rotational axis precesses - meaning the poles gradually travel in circles - the muon's spin, a quantum version of angular momentum, precesses in the presence of a magnetic field. The strength of the magnetic field surrounding a muon influences the rate at which its spin precesses. Scientists can determine the muon's g-factor using measurements of the spin precession rate and the magnetic field strength.

The more precise these initial measurements are, the more convincing the final result will be. The scientists are on their way to achieve field measurements accurate to 70 parts per billion. This level of precision enables the final calculation of the g-factor to be accurate to four times the precision of the results of the Brookhaven experiment. If the experimentally measured value differs significantly from the expected Standard Model value, it may indicate the existence of unknown particles whose presence disturbs the local magnetic field around the muon.

Trolley ride
During data collection, a magnetic field causes a beam of muons to travel around a large, hollow ring. To map the magnetic field strength throughout the ring with high resolution and precision, the scientists designed a trolley system to drive measurement probes around the ring and collect data.

The University of Heidelberg developed the trolley system for the Brookhaven experiment, and Argonne scientists refurbished the equipment and replaced the electronics. In addition to 378 probes that are mounted within the ring to constantly monitor field drifts, the trolley holds 17 probes that periodically measure the field with higher resolution.

"Every three days, the trolley goes around the ring in both directions, taking around 9,000 measurements per probe and direction," said Corrodi. "Then we take the measurements to construct slices of the magnetic field and then a full, 3D map of the ring."

The scientists know the exact location of the trolley in the ring from a new barcode reader that records marks on the bottom of the ring as it moves around.

The ring is filled with a vacuum to facilitate controlled decay of the muons. To preserve the vacuum within the ring, a garage connected to the ring and vacuum stores the trolley between measurements. Automating the process of loading and unloading the trolley into the ring reduces the risk of the scientists compromising the vacuum and the magnetic field by interacting with the system. They also minimized the power consumption of the trolley's electronics in order to limit the heat introduced to the system, which would otherwise disrupt the precision of the field measurement.

The scientists designed the trolley and garage to operate in the ring's strong magnetic field without influencing it. "We used a motor that works in the strong magnetic field and with minimal magnetic signature, and the motor moves the trolley mechanically, using strings," said Corrodi. "This reduces noise in the field measurements introduced by the equipment."

The system uses the least amount of magnetic material possible, and the scientists tested the magnetic footprint of every single component using test magnets at the University of Washington and Argonne to characterize the overall magnetic signature of the trolley system.

The power of communication
Of the two cables pulling the trolley around the ring, one of them also acts as the power and communication cable between the control station and the measurement probes.

To measure the field, the scientists send a radio frequency through the cable to the 17 trolley probes. The radio frequency causes the spins of the molecules inside the probe to rotate in the magnetic field. The radio frequency is then switched off at just the right moment, causing the water molecules' spins to precess. This approach is called nuclear magnetic resonance (NMR).

The frequency at which the probes' spins precess depends on the magnetic field in the ring, and a digitizer on board the trolley converts the analog radio frequency into multiple digital values communicated through the cable to a control station. At the control station, the scientists analyze the digital data to construct the spin precession frequency and, from that, a complete magnetic field map.

During the Brookhaven experiment, all signals were sent through the cable simultaneously. However, due to the conversion from analog to digital signal in the new experiment, much more data has to travel over the cable, and this increased rate could disturb the very precise radio frequency needed for the probe measurement. To prevent this disturbance, the scientists separated the signals in time, switching between the radio frequency signal and data communication in the cable.

"We provide the probes with a radio frequency through an analog signal," said Corrodi, "and we use a digital signal for communicating the data. The cable switches between these two modes every 35 milliseconds."

The tactic of switching between signals traveling through the same cable is called "time-division multiplexing," and it helps the scientists reach specifications for not only accuracy, but also noise levels. An upgrade from the Brookhaven experiment, time-division multiplexing allows for higher-resolution mapping and new capabilities in magnetic field data analysis.

Upcoming results
Both the field mapping NMR system and its motion control were successfully commissioned at Fermilab and have been in reliable operation during the first three data-taking periods of the experiment.

The scientists have achieved unprecedented precision for field measurements, as well as record uniformity of the ring's magnetic field, in this Muon g-2 experiment. Scientists are currently analyzing the first round of data from 2018, and they expect to publish the results by the end of 2020.

The scientists detailed the complex setup in a paper, titled "Design and performance of an in-vacuum, magnetic field mapping system for the Muon g-2 experiment," published in the Journal of Instrumentation.

Research paper


Related Links
Argonne National Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists find upper limit for the speed of sound
London, UK (SPX) Oct 11, 2020
A research collaboration between Queen Mary University of London, the University of Cambridge and the Institute for High Pressure Physics in Troitsk has discovered the fastest possible speed of sound. The result- about 36 km per second - is around twice as fast as the speed of sound in diamond, the hardest known material in the world. Waves, such as sound or light waves, are disturbances that move energy from one place to another. Sound waves can travel through different mediums, such as air ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Cygnus delivers slew of research programs to Space Station

International Space Station marks 20 years of humans on board

China pushes domestic economy, tech power in five-year plan

Virgin Galactic hires two new pilots

TIME AND SPACE
Sounding Rocket to See What Keeps Intergalactic Space Sizzling

ESA lays out roadmap to Ariane 6 and Vega-C flights

Rocket Lab launches 15th Mission - deploys sats Planet and Canon

Rockets need intelligence booster, say engineers

TIME AND SPACE
Geologists simulate soil conditions to help grow plants on Mars

NASA's Perseverance Rover Is Midway to Mars

Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

Leonardo at work on robotic arms for the NASA and ESA Mars Sample Return mission

TIME AND SPACE
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

TIME AND SPACE
Kleos team complete final prep for Scouting Mission launch Nov 7

Globalsat Group successfully tests Iridium Edge Pro

Budding space entrepreneurs wow industry experts

ESA Masterclass full series: Leadership at Mission Control

TIME AND SPACE
Monitoring open-cast mines better than before

3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

Price, date, games... PlayStation 5 and Xbox Series X

Building cities with wood would store half of cement industry's current carbon emissions

TIME AND SPACE
About Half of Sun-Like Stars Could Host Rocky, Potentially Habitable Planets

Comets Had Impact in the Start of Life on Earth

Mars-sized rogue planet found drifting through the Milky Way

Data reveals evidence of molecular absorption in the atmosphere of a hot Neptune

TIME AND SPACE
NASA's Webb To Examine Objects in the Graveyard of the Solar System

Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

Arrokoth: Flattening of a snowman









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.