. 24/7 Space News .
CARBON WORLDS
No limit yet for carbon nanotube fibers
by Staff Writers
Houston TX (SPX) Aug 18, 2020

The cross-section of a fiber produced at Rice University contains tens of millions of carbon nanotubes. The lab continually improves its method to make fibers, which tests show are now stronger than Kevlar.

Carbon nanotube fibers made at Rice University are now stronger than Kevlar and are inching up on the conductivity of copper.

The Rice lab of chemical and biomolecular engineer Matteo Pasquali reported in Carbon it has developed its strongest and most conductive fibers yet, made of long carbon nanotubes through a wet spinning process.

In the new study led by Rice graduate students Lauren Taylor and Oliver Dewey, the researchers noted that wet-spun carbon nanotube fibers, which could lead to breakthroughs in a host of medical and materials applications, have doubled in strength and conductivity every three years, a trend that spans almost two decades.

While that may never mimic Moore's Law, which set a benchmark for computer chip advances for decades, Pasquali and his team are doing their part to advance the method they pioneered to make carbon nanotube fibers.

The lab's threadlike fibers, with tens of millions of nanotubes in cross section, are being studied for use as bridges to repair damaged hearts, as electrical interfaces with the brain, for use in cochlear implants, as flexible antennas and for automotive and aerospace applications.

They are also part of the Carbon Hub, a multiuniversity research initiative launched in 2019 by Rice with support from Shell, Prysmian and Mitsubishi to create a zero-emissions future.

"Carbon nanotube fibers have long been touted for their potential superior properties," Pasquali said. "Two decades of research at Rice and elsewhere have made this potential a reality. Now we need a worldwide effort to increase production efficiency so these materials could be made with zero carbon dioxide emissions and potentially with concurrent production of clean hydrogen."

"The goal of this paper is to put forth the record properties of the fibers produced in our lab," Taylor said. "These improvements mean we're now surpassing Kevlar in terms of strength, which for us is a really big achievement. With just another doubling, we would surpass the strongest fibers on the market."

The flexible Rice fibers have a tensile strength of 4.2 gigapascals (GPa), compared to 3.6 GPa for Kevlar fibers. The fibers require long nanotubes with high crystallinity; that is, regular arrays of carbon-atom rings with few defects. The acidic solution used in the Rice process also helps reduce impurities that can interfere with fiber strength and enhances the nanotubes' metallic properties through residual doping, Dewey said.

"The length, or aspect ratio, of the nanotubes is the defining characteristic that drives the properties in our fibers," he said, noting the surface area of the 12-micrometer nanotubes used in Rice fiber facilitates better van der Waals bonds. "It also helps that the collaborators who grow our nanotubes optimize for solution processing by controlling the number of metallic impurities from the catalyst and what we call amorphous carbon impurities."

The researchers said the fibers' conductivity has improved to 10.9 megasiemens (million siemens) per meter. "This is the first time a carbon nanotube fiber has passed the 10 megasiemens threshold, so we've achieved a new order of magnitude for nanotube fibers," Dewey said. Normalized for weight, he said the Rice fibers achieve about 80% of the conductivity of copper.

"But we're surpassing platinum wire, which is a big achievement for us," Taylor said, "and the fiber thermal conductivity is better than any metal and any synthetic fibers, except for pitch graphite fibers."

The lab's goal is to make the production of superior fibers efficient and inexpensive enough to be incorporated by industry on a large scale, Dewey said. Solution processing is common in the production of other kinds of fibers, including Kevlar, so factories could use familiar processes without major retooling.

"The benefit of our method is that it's essentially plug-and-play," he said. "It's inherently scalable and fits in with the way synthetic fibers are already made."

"There's a notion that carbon nanotubes are never going to be able to obtain all the properties that people have been hyping now for decades," Taylor said. "But we're making good gains year over year. It's not easy, but we still do believe this technology is going to change the world."

Co-authors of the paper are Rice alumnus Robert Headrick; graduate students Natsumi Komatsu and Nicolas Marquez Peraca; Geoff Wehmeyer, an assistant professor of mechanical engineering; and Junichiro Kono, the Karl F. Hasselmann Professor in Engineering and a professor of electrical and computer engineering, of physics and astronomy, and of materials science and nanoengineering. Pasquali is the A.J. Hartsook Professor of Chemical and Biomolecular engineering, of chemistry and of materials science and nanoengineering.

Research paper


Related Links
Rice University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
New soil models may ease atmospheric CO2, climate change
Ithaca NY (SPX) Aug 03, 2020
To remove carbon dioxide from the Earth's atmosphere in an effort to slow climate change, scientists must get their hands dirty and peek underground. In an article published July 27 in Nature Geoscience, Cornell University's Johannes Lehmann and others wrote that scientists should develop new models that more accurately reflect the carbon-storage processes beneath our feet, in order to effectively draw down atmospheric carbon dioxide. Carbon's journey into the soil is akin to a busy New York ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

Roscosmos teases names of next year's ISS tourist group flight

Richard Branson space-bound in early 2021 says Virgin Galactic

CARBON WORLDS
Astronauts praise 'flawless' SpaceX capsule landing

Russia wants to return to Venus, build reusable rocket

SpaceX launches 10th Starlink batch

Spaceflight and Benchmark sign green propulsion deal for Sherpa launcher

CARBON WORLDS
NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

Lava tubes on Mars and the Moon are so wide they can host planetary bases

CARBON WORLDS
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

CARBON WORLDS
SES selects SpaceX for launch of new C-Band satellites

Hisdesat And XTAR Complete Transaction For XTAR-EUR Satellite

Amazon to invest $10 bn in space-based internet system

Latvia becomes ESA Associate Member State

CARBON WORLDS
'Fortnite' maker sues Apple over app restrictions

Digital content to total half Earth's mass by 2245

French firm thrusts Microsoft Flight Simulator to new take-off

Apple and Google pull 'Fortnite' from mobile app shops

CARBON WORLDS
Lava oceans may not explain the brightness of some hot super-Earths

Deep sea microbes dormant for 100 million years are hungry and ready to multiply

Surprising number of exoplanets could host life

As if space wasn't dangerous enough

CARBON WORLDS
Ammonia sparks unexpected, exotic lightning on Jupiter

NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.