. 24/7 Space News .
STELLAR CHEMISTRY
New study shows colliding neutron stars may unlock mysteries of universe expansion
by Staff Writers
Orlando FL (SPX) Jul 09, 2020

"The double neutron star system we observed shows the most asymmetric masses amongst the known merging systems within the age of the universe," says Benetege Perera, a UCF scientist at Arecibo who co-authored the paper. "Based on what we know from LIGO and our study, understanding and characterizing of the asymmetric mass double neutron star population is vital to gravitational wave astronomy." (illustration only)

The National Science Foundation's Arecibo Observatory in Puerto Rico has proven itself instrumental in another major astronomical discovery.

An international team of scientists, led by the University of East Anglia in the United Kingdom, found an asymmetrical double neutron star system using the facility's powerful radio telescope. This type of star system is believed to be a precursor to merging double neutron star systems like the one that LIGO (the Laser Interferometer Gravitational-Wave Observatory in the United States) discovered in 2017. The LIGO observation was important, because it confirmed the gravitational waves associated with merging neutron stars.

The work published by this team in the journal Nature, indicates these specific kinds of double neutron star systems may be the key to understanding dead star collisions and the expansion of the universe.

"Back in 2017, scientists at LIGO first detected the merger of two neutron stars," says physicist Robert Ferdman, who led the team. "The event caused gravitational-wave ripples through the fabric of space time, as predicted by Albert Einstein over a century ago. It confirmed that the phenomenon of short gamma-ray bursts was due to the merger of two neutron stars."

One of the unique aspects of the 2017 discovery and today's is that the double neutron systems observed are composed of stars that have very different masses. Current theories about the 2017 discovery are based on the masses of stars being equal or very close in size.

"The double neutron star system we observed shows the most asymmetric masses amongst the known merging systems within the age of the universe," says Benetege Perera, a UCF scientist at Arecibo who co-authored the paper. "Based on what we know from LIGO and our study, understanding and characterizing of the asymmetric mass double neutron star population is vital to gravitational wave astronomy."

Perera, whose research is focused on pulsars and gravitational waves, joined the NSF-funded Arecibo Observatory in June 2019. The facility, which is managed by the University of Central Florida through a cooperative agreement with the NSF, offers scientists around the world a unique look into space because of its specialized instruments and its location near the equator.

The Discovery
The team discovered an unusual pulsar - one of deep space's magnetized spinning neutron-star 'lighthouses' that emits highly focused radio waves from its magnetic poles.

The newly discovered pulsar (known as PSR J1913+1102) is part of a binary system - which means that it is locked in a fiercely tight orbit with another neutron star.

"The Arecibo Observatory has a long legacy of important pulsar discoveries," says NSF Program Officer, Ashley Zauderer. "This exciting result shows how incredibly relevant the facility's unique sensitivity remains for scientific investigations in the new era of multi-messenger astrophysics."

Neutron stars are the dead stellar remnants of a supernova explosion. They are made up of the densest matter known - packing hundreds of thousands of times the Earth's mass into a sphere the size of a city like New York.

In about half a billion years the two neutron stars will collide, releasing astonishing amounts of energy in the form of gravitational waves and light.

That collision is what the LIGO team observed in 2017. The event was not surprising, but the enormous amount of matter ejected from the merger and its brightness was unexpected, Ferdman said.

"Most theories about this event assumed that neutron stars locked in binary systems are very similar in mass," Ferdman says. "But this newly discovered binary is unusual because the masses of its two neutron stars are quite different - with one far larger than the other. Our discovery changes these assumptions."

This asymmetric system gives scientists confidence that double neutron star mergers will provide vital clues about unsolved mysteries in astrophysics - including a more accurate determination of the expansion rate of the universe, known as the Hubble constant.


Related Links
University Of Central Florida
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Scientific 'red flag' reveals new clues about our galaxy
Daytona Beach FL (SPX) Jul 07, 2020
Figuring out how much energy permeates the center of the Milky Way - a discovery reported in the July 3 edition of the journal Science Advances - could yield new clues to the fundamental source of our galaxy's power, said L. Matthew Haffner of Embry-Riddle Aeronautical University. The Milky Way's nucleus thrums with hydrogen that has been ionized, or stripped of its electrons so that it is highly energized, said Haffner, assistant professor of physics and astronomy at Embry-Riddle and co-author of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Student space simulation is seeking astronauts

NASA adds software experts to work toward new Boeing capsule flight

Details about the first-ever tourist walk in outer space revealed

Researchers foresee linguistic issues during space travel

STELLAR CHEMISTRY
Advanced Rockets Corporation granted Space Vehicle System patents

NASA Assembles Artemis II Orion Stage Adapter

Rocket Lab promises customers to 'Leave No Stone Unturned' launch failure

Rocket Lab Mission Fails to Reach Orbit

STELLAR CHEMISTRY
'Marsquakes' measured by InSight show effects of sun and wind

Summer road trip for Curiosity rover has begun

Flight over Korolev Crater on Mars

China eyes July 20-25 launch for Mars rover

STELLAR CHEMISTRY
China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

STELLAR CHEMISTRY
ESA Startup competition announces four winners

Latest satellites give stargazers a new sky view

New satellite constellation to boost Australia's national security capability amid rising tensions

UK, Indian firm salvage satellite operator Oneweb

STELLAR CHEMISTRY
Just add nano-materials for stronger, tougher diving fins

US Air Force collaboration leads to new method of triggering shape change

Launch campaign for 2nd Mission Extension Vehicle begins at Kourou

Geologists identify deep-earth structures that may signal hidden metal lodes

STELLAR CHEMISTRY
First exposed planetary core discovered allows glimpse inside other worlds

Unprecedented ground-based discovery of 2 strongly interacting exoplanets

Dying stars breathe life into Earth

The cosmic commute toward star and planet formation

STELLAR CHEMISTRY
Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.