. 24/7 Space News .
STELLAR CHEMISTRY
Scientific 'red flag' reveals new clues about our galaxy
by Staff Writers
Daytona Beach FL (SPX) Jul 07, 2020

To determine the amount of energy or radiation at the center of the Milky Way, researchers with Embry-Riddle Aeronautical University, the University of Wisconsin-Madison and UW-Whitewater peered through a kind of tattered dust cover. See video here

Figuring out how much energy permeates the center of the Milky Way - a discovery reported in the July 3 edition of the journal Science Advances - could yield new clues to the fundamental source of our galaxy's power, said L. Matthew Haffner of Embry-Riddle Aeronautical University.

The Milky Way's nucleus thrums with hydrogen that has been ionized, or stripped of its electrons so that it is highly energized, said Haffner, assistant professor of physics and astronomy at Embry-Riddle and co-author of the Science Advances paper.

"Without an ongoing source of energy, free electrons usually find each other and recombine to return to a neutral state in a relatively short amount of time," he explained. "Being able to see ionized gas in new ways should help us discover the kinds of sources that could be responsible for keeping all that gas energized."

University of Wisconsin-Madison graduate student Dhanesh Krishnarao ("DK"), lead author of the Science Advances paper, collaborated with Haffner and UW-Whitewater Professor Bob Benjamin - a leading expert on the structure of stars and gas in the Milky Way.

Before joining Embry-Riddle in 2018, Haffner worked as a research scientist for 20 years at UW, and he continues to serve as principal investigator for the Wisconsin H-Alpha Mapper, or WHAM, a telescope based in Chile that was used for the team's latest study.

To determine the amount of energy or radiation at the center of the Milky Way, the researchers had to peer through a kind of tattered dust cover. Packed with more than 200 billion stars, the Milky Way also harbors dark patches of interstellar dust and gas.

Benjamin was taking a look at two decades' worth of WHAM data when he spotted a scientific red flag - a peculiar shape poking out of the Milky Way's dark, dusty center. The oddity was ionized hydrogen gas, which appears red when captured through the sensitive WHAM telescope, and it was moving in the direction of Earth.

The position of the feature - known to scientists as the "Tilted Disk" because it looks tilted compared with the rest of the Milky Way - couldn't be explained by known physical phenomena such as galactic rotation.

The team had a rare opportunity to study the protruding Tilted Disk, liberated from its usual patchy dust cover, by using optical light. Usually, the Tilted Disk must be studied with infrared or radio light techniques, which allow researchers to make observations through the dust, but limit their ability to learn more about ionized gas.

"Being able to make these measurements in optical light allowed us to compare the nucleus of the Milky Way to other galaxies much more easily," Haffner said. "Many past studies have measured the quantity and quality of ionized gas from the centers of thousands of spiral galaxies throughout the universe. For the first time, we were able to directly compare measurements from our Galaxy to that large population."

Krishnarao leveraged an existing model to try and predict how much ionized gas should be in the emitting region that had caught Benjamin's eye. Raw data from the WHAM telescope allowed him to refine his predictions until the team had an accurate 3-D picture of the structure. Comparing other colors of visible light from hydrogen, nitrogen and oxygen within the structure gave researchers further clues to its composition and properties.

At least 48 percent of the hydrogen gas in the Tilted Disk at the center of the Milky Way has been ionized by an unknown source, the team reported. "The Milky Way can now be used to better understand its nature," Krishnarao said.

The gaseous, ionized structure changes as it moves away from the Milky Way's center, researchers reported. Previously, scientists only knew about the neutral (non-ionized) gas located in that region.

"Close to the nucleus of the Milky Way," Krishnarao explained, "gas is ionized by newly forming stars, but as you move further away from the center, things get more extreme, and the gas becomes similar to a class of galaxies called LINERs, or low ionization (nuclear) emission regions."

The structure appeared to be moving toward Earth because it was on an elliptical orbit interior to the Milky Way's spiral arms, researchers found.

LINER-type galaxies such as the Milky Way make up roughly a third of all galaxies. They have centers with more radiation than galaxies that are only forming new stars, yet less radiation than those whose supermassive black holes are actively consuming a tremendous amount of material.

"Before this discovery by WHAM, the Andromeda Galaxy was the closest LINER spiral to us," said Haffner. "But it's still millions of light-years away. With the nucleus of the Milky Way only tens of thousands of light-years away, we can now study a LINER region in more detail. Studying this extended ionized gas should help us learn more about the current and past environment in the center of our Galaxy."

Next up, researchers will need to figure out the source of the energy at the center of the Milky Way. Being able to categorize the galaxy based on its level of radiation was an important first step toward that goal.

Now that Haffner has joined Embry-Riddle's growing Astronomy and Astrophysics program, he and his colleague Edwin Mierkiewicz, associate professor of physics, have big plans.

"In the next few years, we hope to build WHAM's successor, which would give us a sharper view of the gas we study," Haffner said. "Right now our map `pixels' are twice the size of the full moon. WHAM has been a great tool for producing the first all-sky survey of this gas, but we're hungry for more details now."

In separate research, Haffner and his colleagues earlier this month reported the first-ever visible-light measurements of "Fermi Bubbles" - mysterious plumes of light that bulge from the center of the Milky Way. That work was presented at the American Astronomical Society.

Research Report: "Discovery of Diffuse Optical Emission Lines from the Inner Galaxy: Evidence for LI(N)ER-like Gas"


Related Links
Embry-Riddle Aeronautical University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
FAST detects neutral hydrogen emission from distant galaxies for first time
Beijing, China (SPX) Jul 02, 2020
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is the largest telescope with the highest sensitivity in the world. Extragalactic neutral hydrogen detection is one of important scientific goals of FAST. Recently, an international research team led by Dr. CHENG Cheng from Chinese Academy of Sciences South America Center for Astronomy (CASSACA) observed four extragalactic galaxies by using the FAST 19-beam receiver, and detected the neutral hydrogen line emission from three targets ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Details about the first-ever tourist walk in outer space revealed

NASA invests $51M in innovative ideas from US Small Businesses

NASA concludes second spacewalk on historic mission

Russian cosmonaut votes on Putin's reforms from ISS

STELLAR CHEMISTRY
NASA Assembles Artemis II Orion Stage Adapter

NASA checks out SLS Core Stage avionics for Artemis I mission

Russia's Roscosmos Reveals Cost of Angara Heavy-Lift Rocket for Defence Ministry

Advanced Rockets Corporation granted Space Vehicle System patents

STELLAR CHEMISTRY
'Marsquakes' measured by InSight show effects of sun and wind

Flight over Korolev Crater on Mars

China eyes July 20-25 launch for Mars rover

SwRI scientists demonstrate speed, precision of in situ planetary dating device

STELLAR CHEMISTRY
China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

STELLAR CHEMISTRY
Latest satellites give stargazers a new sky view

US May Freeze OneWeb Sale in Blow to UK Hopes for Own Sat-Nav System

India's private space sector an unknown quantity

SpaceX launch Friday would boost Starlink network to nearly 600

STELLAR CHEMISTRY
The lightest shielding material in the world

BAE Systems Delivers First Radiation-Hardened RAD5545 Radios

Capella Space goes all-in on AWS

AFRL partners with FSU to develop reinforced ceramics 3D printing of sensors

STELLAR CHEMISTRY
NASA's TESS delivers new insights into an ultrahot world

First exposed planetary core discovered

First exposed planetary core discovered allows glimpse inside other worlds

Unprecedented ground-based discovery of 2 strongly interacting exoplanets

STELLAR CHEMISTRY
Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.