. 24/7 Space News .
US Air Force collaboration leads to new method of triggering shape change
by Mary Pacinda for AFRL News
Wright-Patterson AFB OH (SPX) Jul 03, 2020

AFRL scientist, Dr. Vincent Chen, demonstrates the experimental setup used to trigger shape change in soft, magnetically responsive elastomers. (U.S. Air Force photo/Spencer Deer)

The saying "form follows function" speaks to the obvious relationship between an object's shape and its purpose, that is, how it will be used. It seems reasonable, then, if an object can change its shape, it can be used for a broader range of purposes.

Researchers at the Air Force Research Laboratory, in collaboration with academic colleagues, have used this idea as motivation for designing soft materials that can change shape under an applied magnetic field.

The research findings, published in a recent issue of the journal Physical Review Letters (PRL), demonstrated the ability of magnetic fields to reversibly change the internal structure of a magneto-active composite.

Magneto-active elastomer composites are an important class of soft, shape-recoverable materials that exhibit a stiffness increase and shape change in response to an applied magnetic field. Using magnetic fields provides a fast and non-contact method to tune internal structure, which is relevant for soft actuators, adaptive vibration dampers and filtering applications.

"We are excited about the potential for magnetic tuning to improve vibration sensing and control in aircraft and other vehicle environments," said co-author Dr. Abigail Juhl from the Materials and Manufacturing Directorate of AFRL.

Making sense of how mechanical instabilities and magnetic fields interact is a fundamental part of the work, a task undertaken recently in a paper that was submitted to PRL. The research was presented in such a clear and succinct manner that the paper, Instability-Induced Pattern Formations in Soft Magnetoactive Composites, was given special recognition by being selected as a highlighted article by PRL.

About 13 years ago, PRL's editors decided to begin prominently highlighting certain submissions. According to PRL's website, the goal was to "direct readers to interesting papers outside of their subfield of research in order to ... restore the ability of PRL to give readers a broad view of current research."

The editors of PRL make their selection on the basis of several criteria, for example, the particular interest of the manuscript as well as the clarity of the writing.

In discussing the paper, corresponding author Dr. Stephen Rudykh of the University of Wisconsin emphasized the exciting, new directions of research motivated by this work.

"The design space for architected elastomers is very rich," he said, "with additional mechanisms for magneto-mechanical interactions to be discovered and harnessed for applications." The Air Force Research Laboratory and University of Wisconsin team plan to build on these ideas to continue delivering reconfigurable forms for new functions.

The paper, co-authored by Artemii Goshkoderia, Vincent Chen, Jian Li, Abigail Juhl, Philip Buskohl and Stephan Rudykh, was published in the April 14, 2020, issue of PRL.

Related Links
Air Force Research Laboratory
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Precise measurement of liquid iron density under extreme conditions
Kumamoto, Japan (SPX) Jun 26, 2020
Using the large synchrotron radiation facility SPring-8 in Japan, a collaboration of researchers from Kumamoto University, the University of Tokyo, and others from Japan and France have precisely measured the density of liquid iron under conditions similar to those at Earth's outer core: 1,000,000 atm and 4,000 degrees C. Accurate density measurements of liquid iron under such extreme conditions is very important for understanding the chemical make-up of our planet's core. The Earth has a solid me ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Iconic '2001: A Space Odyssey' suit to hit auction block

First contract signed for tourist space walk reports Roscosmos

Astronauts complete spacewalk outside space station

Russia plans to take first tourist on space walk in 2023

Russia's Roscosmos Reveals Cost of Angara Heavy-Lift Rocket for Defence Ministry

The rocket fired by Scrum

SpaceX launches next-generation GPS satellite from Florida

NASA Plans for More SLS Rocket Boosters to Launch Artemis Moon Missions

Mud downpours might have formed some of Mars's ancient highlands

NASA takes first step to allow computers to decide what to tell us in search for life on Mars

How NASA's Mars Helicopter Will Reach the Red Planet's Surface

NASA's new Mars mission will take at least a decade to confirm life

China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

NASA moving forward to enable a low-earth orbit economy

US May Freeze OneWeb Sale in Blow to UK Hopes for Own Sat-Nav System

India's private space sector an unknown quantity

SpaceX launch Friday would boost Starlink network to nearly 600

Capella Space goes all-in on AWS

AFRL partners with FSU to develop reinforced ceramics 3D printing of sensors

Precise measurement of liquid iron density under extreme conditions

ThinKom demonstrates IFC antenna interoperability with LEO, MEO and GEO satellites

First measurement of spin-orbit alignment on planet Beta Pictoris b

Space Team Theorizes Rare Exomoon Discovery

Super-Earths discovered orbiting nearby red dwarf

Young Planets Bite the Dust

Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.