. | . |
New method helps stabilize materials with elusive magnetism by Staff Writers New York NY (SPX) Aug 12, 2016
Magnetic materials displaying what is referred to as itinerant ferromagnetism are in an elusive physical state that is not yet fully understood. They behave like a magnets under very specific conditions, such as at ultracold temperatures near absolute zero. Physicists normally have no other choice than to study this very unique state of matter in a controlled fashion, using ultracold atomic gases. Now, a team based at ETH Zurich, Switzerland has introduced two new theoretical approaches to stabilise the ferromagnetic state in quantum gases to help study the characteristics of itinerant ferromagnetic materials. These results were recently published in EPJ B by Ilia Zintchenko and colleagues. Physicists already know that magnetic order can arise in materials when the temperature drops below their material-specific critical temperature. Then the state of electrons' inner characteristics, called spin, can either be split between spin up and spin down, while the electrons can still move in space. Realising the itinerant ferromagnetic state experimentally using ultracold gas is a challenging undertaking. This is because when three atoms - one with the opposite spin of the other two - come close to each other two atoms with opposite spin will form molecules and the other one carries the binding energy away; a phenomenon called rapid three-body recombination. The rate of such recombination process increases rapidly with the scattering length. In this study, the authors discussed two new improved stability conditions for ferromagnetic state in quantum gasses. The first approach involves imposing a moderate optical lattice, which extends the ferromagnetic phase to smaller scattering lengths. There, the three-body recombination is small enough to permit experimental detection of the phase. In a second approach, they suggest to prepare two initially separated clouds and study their time evolution. The ferromagnetic domains has longer life time because of the reduced overlap region between the two spins. I. Zintchenko, L. Wang and M. Troyer (2016), Ferromagnetism of the Repulsive Atomic Fermi Gas: three-body recombination and domain formation, Eur. Phys. J. B 89: 180, DOI 10.1140/epjb/e2016-70302-5
Related Links Springer Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |