. 24/7 Space News .
Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket
by Staff Writers
Kennedy Space Center FL (SPX) Jul 29, 2016

Technicians prepare to bond thermal protection system tiles on the Orion crew module for the agency's Exploration Mission-1 with the Space Launch System (SLS) rocket. Orion requires about 1,300 tiles. Many of the Orion tiles are standard, except for those which fit around windows, thrusters or antennae. Along with the spacecraft's heatshield, the tiles will protect Orion from the 5,000 degree Fahrenheit heat of re-entry. Image courtesy NASA/Cory Huston. For a larger version of this image please go here.

A crucial part of preparing NASA's next Orion spacecraft for flight now is underway. Technicians recently began the process of bonding thermal protection system (TPS) tiles to panels that will be installed on Orion. The tiles will protect the spacecraft from the searing heat of re-entry when it returns from deep space missions.

The first integrated mission of NASA's Space Launch System (SLS) rocket with Orion, Exploration Mission 1, or EM-1, will lift off from Launch Complex 39B at NASA's Kennedy Space Center in Florida. On the mission, the spacecraft will venture 40,000 miles beyond the orbit of the moon, farther than any spacecraft built for humans has ever traveled, testing the systems needed for the agency's journey to Mars. The mission will conclude with Orion re-entering through the Earth's atmosphere at 25,000 mph, generating heat at about 5,000 degrees Fahrenheit.

According to Joy Huff, a thermal protection system engineer in the Materials Science Branch of Kennedy Engineering, Orion's back shell panels and forward bay cover, which helps protect the spacecraft during re-entry, will be protected by silica tiles similar to those used for more than 30 years on the space shuttle.

"The seven to eight technicians and two quality inspectors with Arctic Slope Research Corp. doing the work are veterans of bonding tiles to the shuttle orbiters." she said. "The tiles are manufactured here in Kennedy's Thermal Protection System Facility."

Denver-based Lockheed Martin Space Systems Co. is the prime contractor for the Orion spacecraft.

The company provides digital, computer-aided design information that defines the size and shape of each tile. At Kennedy's TPSF, that information is used to manufacture the tiles. A 3-D camera then scans the as-built shape for comparison to the design information. This ensures that the manufactured tile meets the design requirements before it is placed on one of nine tile panels or the forward bay cover.

The bonding process began in July and will take several months. The work is taking place in the high bay of the Neil Armstrong Operations and Checkout Building where assembly of the Orion crew module's pressure vessel, or underlying structure, has been taking place since it arrived at the Florida spaceport in February.

Orion will need about 1,300 tiles to protect it. On average, the tiles are 8-inches by 8-inches and many are standard in size allowing them to have the same dimensions with the same part number.

"Some tiles on Orion are a unique design to fit around windows, thrusters and antennas," Huff said.

Huff noted that Orion tiles incorporate a stronger coating called "toughened uni-piece fibrous insulation," or TUFI coating, which was used toward the end of the Space Shuttle Program.

"The 'tougher' tiles are important to Orion as they will help limit damage during ground processing and by debris in orbit," Huff said.

Once the tile bonding is complete, the nine panels and forward bay cover will be installed on the crew module after it is mated to its service module.

"For EM-1, the back shell panels will have a different look than Orion's first test flight," said Huff.

Orion's inaugural mission, known as Exploration Flight Test-1, or EFT-1, was flown on Dec. 5, 2014. On that flight, the tiles gave the crew module a black look.

"For EM-1, we will place an aluminized coating over the tiles, giving it a shiny silver look," she said.

Following deep-space missions, Orion will make a comet-like re-entry through Earth's atmosphere, protected by the tiles and the largest and most advanced heat shield ever constructed. The spacecraft then will splashdown in the ocean.

"The fact that Orion lands in the ocean, requires we replace the tiles after each mission," Huff said. "The tiles are waterproofed to protect them from fresh water, such as rain. But during re-entry the waterproofing material burns out of the tiles so they do absorb salt water while in the ocean and that adds contaminants that would make their reuse impossible."

Installing TPS tiles will be a part of preparation for each mission. The work taking place now will help perfect the process.

For EM-1, Orion will travel well beyond the moon for about three weeks, collecting data and allowing mission controllers to assess the performance of the spacecraft.

"We're looking forward to EM-1," Huff said. "SLS is the largest rocket ever built. It will help confirm we're doing things the right way on Orion, and we'll be another step closer to Mars."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Journey to Mars
Space Tourism, Space Transport and Space Exploration News

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Russia, US Discuss Lunar Station for Mars Mission
Moscow (Sputnik) Jul 22, 2016
Russia's Roscosmos Corporation and NASA are in discussions about future of joint space missions following the conclusion of the ISS project in 2024; one proposal is to create a space base close to the Moon which will enable the deep space exploration of Mars and beyond. The International Space Station project, a partnership between Russia, the US, EU, Japan and Canada, is planned to end in 2024 ... read more

Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Taiwan to make lunar lander for NASA moon-mining mission

Digging deeper into Mars

NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

NASA Mars Rover Can Choose Laser Targets on Its Own

Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

NASA Sails Full-Speed Ahead in Solar System Exploration

Sensor Technology Could Revolutionize What You Sleep On

China to expand int'l astronauts exchange

China's Agreement with United Nations to Help Developing Countries Get Access to Space

Chinese tracking ship Yuanwang-7 starts maiden voyage

Chinese mega-telescope obtains data on 7 million stars

Dream Chaser Spacecraft on Track to Supply Cargo to ISS

Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

India earned Rs 230 crore through satellite launch services in FY16

US Plan to Diversify Expendable Space Launch Vehicles Being Questioned

Intelsat 33e arrives at the Spaceport for Arianespace's August launch with Ariane 5

The rise of commercial spaceports

Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

Surface Composition Determines Planet's Temperature and Habitability

An accelerated pipeline to open materials research

HawkEye 360 brings space-based radio frequency mapping and analytics to new applications

A third of U.S. adults say they'd be enthusiastic about a microchip implanted in brain

NASA Establishes Institute to Explore New Ways to Protect Astronauts

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.