. 24/7 Space News .
TIME AND SPACE
New measurements of the solar spectrum verify Einstein's theory of General Relativity
by Staff Writers
Washington DC (SPX) Oct 09, 2020

illustration only

This work, which verifies one of the predictions of Einstein's General Relativity, is to be published in the journal Astronomy and Astrophysics.

The General Theory of Relativity, published by Albert Einstein between 1911 and 1916, introduced a new concept of space and time, by showing that massive objects cause a distortion in space-time which is felt as gravity. In this way, Einstein's theory predicts, for example, that light travels in curved paths near massive objects, and one consequence is the observation of the Einstein Cross, four different images of a distant galaxy which lies behind a nearer massive object, and whose light is distorted by it.

Other well known effects of General Relativity are the observed gradual change in Mercury's orbit due to space-time curvature around the "massive" Sun, or the gravitational redshift, the displacement to the red of lines in the spectrum of the Sun due to its gravitational field.

The gravitational redshift is an important effect for satellite navigation systems such as GPS, which would not work if General Relativity was not put into the equations. This effect depends on the mass and the radius of an astronomical object, so that even though it is bigger for the Sun than for the Earth, it is still difficult to measure in the solar spectrum.

In 1920, Einstein wrote: "For the Sun, the theoretical redshift predicted is approximately two millionths of the wavelength. Whether this effect really exists is an open question, and astronomers are currently working hard to resolve it. For the Sun, its existence is difficult to judge because the effect is so small".

To measure it, the scientists have used observations of the solar spectrum reflected from the Moon, obtained with the HARPS (High Accuracy Radial-velocity Planet Searcher) instrument using the new technology of the laser frequency comb.

"Combining the precision of the HARPS instrument with the laser frequency comb, we have been able to measure with high accuracy the position of the iron lines in the solar spectrum", explains Jonay Gonzalez Hernandez, a Ramon y Cajal researcher at the IAC and first author of the article. "This has enabled us to verify one of the predictions of Einstein's Theory of General Relativity, the gravitational redshift, to a precision of just a few metres per second".

"New measurements with the laser frequency comb attached to the ESPRESSO spectrograph, on the 8.2 m VLT telescopes, would allow us to improve these measurements", adds Rafael Rebolo, a researcher and the Director of the IAC and a coauthor of the article.

Research Report: "The solar gravitational redshift from HARPS-LFC Moon spectra. A test of the General Theory of Relativity"


Related Links
Instituto De Astrofisica De Canarias (IAC)
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Radio astronomers join moon mission to explore early universe
Charlottesville VA (SPX) Sep 23, 2020
The National Radio Astronomy Observatory (NRAO) has joined a new NASA space mission to the far side of the Moon to investigate when the first stars began to form in the early universe. The universe was dark and foggy during its "dark ages," just 380,000 years after the Big Bang. There were no light-producing structures yet like stars and galaxies, only large clouds of hydrogen gas. As the universe expanded and started to cool down, gravity drove the formation of the stars and black holes, which en ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Simulated satellite rendezvous at ESA

ISS crew analyses dust movement to locate air leak in Russian Module

From Thales to space

Chief Engineer, Deborah Crane Talks Commercial Crew Launch

TIME AND SPACE
Testing a fiery reentry at DLR

ISRO plans to launch new rocket before Dec 2020

Georgia Southern University Shows Massive Tourism Boom for Spaceport Camden

NASA runs eight-part core stage Green Run Test for SLS

TIME AND SPACE
Mars at its biggest and brightest until 2035

Preserved dune fields offer insights into Martian history

The way forward to Mars

AI helps scientists discover fresh craters on Mars

TIME AND SPACE
Eighteen new astronauts chosen for China's space station mission

NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

TIME AND SPACE
Corrective measures needed from satellite "mega-constellation" operators

First space census launches today

Clean and greener tennis using space technology

Despite pandemic-related setbacks, the NewSpace industry has new players enter the field

TIME AND SPACE
Satellite Industry Association releases space traffic management recommendations and white paper

Kongsberg awarded contract for mobile communication satellite

On the trail of causes of radiation events during space flight

Ultrasensitive microwave detector developed

TIME AND SPACE
Some planets may be better for life than Earth

Searching for the chemistry of life

New research explores how super flares affect planets' habitability

First direct observation of exoplanet Beta Pictoris c

TIME AND SPACE
Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.