. 24/7 Space News .
EARLY EARTH
New insights into the interaction of ocean, continent and atmosphere 2.7 billion years ago
by Staff Writers
Bremen Germany (SPX) Jun 14, 2022

a long time in the making ...

What did the Earth look like 2.7 billion years ago and what were the differences compared to today? What was the chemical composition of the oceans and atmosphere? When did life evolve on Earth, that produced enough oxygen to permanently change the environment? How did the interaction of the Earth's mantle and crust work? These are all crucial questions for understanding our planet.

The Temagami BIF rock formation provides clues to answering these questions. The abbreviation BIF stands for Banded Iron Formation and refers to sedimentary rocks with alternating bands of quartz and iron oxides, which formed on the seafloor in the early history of the Earth. Using these rocks, the researchers from Germany, Austria and Denmark were able to show that the iron-rich bands form in seawater when the water was strongly influenced by hot solutions from the deep seafloor. These so-called black smokers still exist today at the mid-ocean ridges.

While the iron bands provide information about the Earth's mantle and the deep sea, the brighter quartz bands in the BIFs contain information about the continents and about the environmental conditions on the landmasses. This is because they were formed when the seawater was dominated by rivers, that is, by input from land, as was revealed by the results of the determination of the germanium-silicon ratios at Kiel University.

For the iron and quartz bands, researchers from the University of Copenhagen and Jacobs University then studied chromium isotope ratios and thorium-uranium systematics. The results for the quartz bands show that, unlike in the deep sea, there were regions on the landmasses where organisms produced enough oxygen to oxidize chromium and uranium and transport them in large quantities to sea already as early as 2,700 million years ago.

"It came as a surprise that in this region this apparently happened more than 200 million years before the actual Great Oxidation Event," said Michael Bau, "Our results suggest that there were already oxygen oases on the early Earth before the planet's atmosphere turned permanently oxic."

At the University of Vienna, the scientists determined the isotope ratios of tungsten-182 to -184 using a high-precision method, which also show subtle differences between the iron and quartz bands. Tungsten-182 is formed by the radioactive decay of hafnium-182, which, however, had already disappeared shortly after the formation of the Earth due to its very short half-life. Experts call this an "extinct" isotope system.

Since the iron bands provide information about the Earth's mantle, and the quartz bands provide information about the Earth's crust, these subtle differences allow conclusions to be drawn about the mixing and homogenization processes in different regions of the Earth's interior.

The Temagami BIF in Canada is a major geo-archive that provides valuable information on the evolution of the Earth through the collaboration of many geochemists with their different analytical tools. This helps to better understand the co-evolution of our planet with its atmosphere and oceans and its biosphere. Only this understanding will allow us to use the Earth's resources as raw materials in a sustainable way and at the same time to preserve the Earth system as our natural habitat.

Research Report:Earth's geodynamic evolution constrained by 182W in Archean seawater.


Related Links
Jacobs University Bremen
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
How plesiosaurs swam underwater
Bochum, Germany (SPX) Jun 06, 2022
Plesiosaurs, which lived about 210 million years ago, adapted to life underwater in a unique way: their front and hind legs evolved in the course of evolution to form four uniform, wing-like flippers. In her thesis supervised at Ruhr-Universitat Bochum and the University of Bonn, Dr. Anna Krahl investigated how they used these to move through the water. Partly by using the finite element method, which is widely used in engineering, she was able to show that it was necessary to twist the flippers i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Left in the dust: The first golden age of citizen travel to outer space

Women in space analogues demonstrate more sustainable leadership

Dragon Mission on Hold as Astronauts Conduct Eye Exams, Spacesuit Work

NASA Moon Mission Set to Break Record in Navigation Signal Test

EARLY EARTH
Artemis II engine section moves to final assembly

NASA Supplier Completes Manufacturing Artemis III SLS Booster Motors

NASA Marshall Team Delivers Tiny, Powerful 'Lunar Flashlight' Propulsion System

SpaceX launches Nilesat 301 satellite, recovers Falcon 9 first stage

EARLY EARTH
How Perseverance averts collisions and zaps

The Aonia Terra region of Mars in colour

Three years of Marsquake measurements

Mars sleeps with one eye open

EARLY EARTH
Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

EARLY EARTH
Solid rocket boosters will support existing ULA customers and Amazon's Project Kuiper

DXC Boosts Connectivity for Space Exploration

Maine looks to grow space economy, for students, research and business

French astronaut Pesquet calls for European space independence

EARLY EARTH
Recovering rare-earth elements from e-waste

UCLA engineers create single-step, all-in-one 3D printing method to make robotic materials

Time to rebuild construction

Moon sculptures, NFTs at futuristic Art Basel fair

EARLY EARTH
Astronomers discover a multiplanet system nearby

New clues suggest how Hot Jupiters form

Asteroid samples contain 'clues to origin of life': Japan scientists

Colossal collisions linked to solar system science

EARLY EARTH
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.