24/7 Space News
TIME AND SPACE
New ice is like a snapshot of liquid water
A new form of ice very similar in molecular structure to liquid water (left), compared to ordinary crystalline ice (right)
ADVERTISEMENT
     
New ice is like a snapshot of liquid water
by Staff Writers
Cambridge UK (SPX) Feb 03, 2023

A collaboration between scientists at Cambridge and UCL has led to the discovery of a new form of ice that more closely resembles liquid water than any other and may hold the key to understanding this most famous of liquids.

The new form of ice is amorphous. Unlike ordinary crystalline ice where the molecules arrange themselves in a regular pattern, in amorphous ice the molecules are in a disorganised form that resembles a liquid.

In this paper, published in Science, the team created a new form of amorphous ice in experiment and achieved an atomic-scale model of it in computer simulation. The experiments used a technique called ball-milling, which grinds crystalline ice into small particles using metal balls in a steel jar. Ball-milling is regularly used to make amorphous materials, but it had never been applied to ice.

The team found that ball-milling created a novel amorphous form of ice, which unlike all other known ices, had a density similar to that of liquid water and whose state resembled water in solid form. They named the new ice medium-density amorphous ice (MDA).

To understand the process at the molecular scale the team employed computational simulation. By mimicking the ball-milling procedure via repeated random shearing of crystalline ice, the team successfully created a computational model of MDA.

"Our discovery of MDA raises many questions on the very nature of liquid water and so understanding MDA's precise atomic structure is very important" comments co-author Dr. Michael Davies, who carried out the computational modelling. "We found remarkable similarities between MDA and liquid water".

A happy medium
Amorphous ices have been suggested to be models for liquid water. Until now, there have been two main types of amorphous ice: high-density and low-density amorphous ice.

As the names suggest, there is a large density gap between them. This density gap, combined with the fact that the density of liquid water lies in the middle, has been a cornerstone of our understanding of liquid water. It has led in part to the suggestion that water consists of two liquids: one high- and one low-density liquid.

Senior author Professor Christoph Salzmann said: "The accepted wisdom has been that no ice exists within that density gap. Our study shows that the density of MDA is precisely within this density gap and this finding may have far-reaching consequences for our understanding of liquid water and its many anomalies."

A high-energy geophysical material
The discovery of MDA gives rise to the question: where might it exist in nature? Shear forces were discovered to be key to creating MDA in this study. The team suggests ordinary ice could undergo similar shear forces in the ice moons due to the tidal forces exerted by gas giants such as Jupiter.

Moreover, MDA displays one remarkable property that is not found in other forms of ice. Using calorimetry, they found that when MDA recrystallises to ordinary ice it releases an extraordinary amount of heat. The heat released from the recrystallization of MDA could play a role in activating tectonic motions. More broadly, this discovery shows water can be a high-energy geophysical material.

Prof. Angelos Michaelides, lead author from Cambridge, said: "Amorphous ice in general is said to be the most abundant form of water in the universe. The race is now on to understand how much of it is MDA and how geophysically active MDA is."

Research Report:Medium-density amorphous ice

Related Links
University of Cambridge
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Physicists observe rare resonance in molecules for the first time
Boston MA (SPX) Feb 03, 2023
If she hits just the right pitch, a singer can shatter a wine glass. The reason is resonance. While the glass may vibrate slightly in response to most acoustic tones, a pitch that resonates with the material's own natural frequency can send its vibrations into overdrive, causing the glass to shatter. Resonance also occurs at the much smaller scale of atoms and molecules. When particles chemically react, it's partly due to specific conditions that resonate with particles in a way that drives them t ... read more

ADVERTISEMENT
ADVERTISEMENT
TIME AND SPACE
NASA Spinoffs bolster climate resilience, improve medical care, more

UAE astronaut says not required to fast during Ramadan on ISS

NASA selects nine technologies for commercial flight tests

20 Years Ago: Remembering Columbia and Her Crew

TIME AND SPACE
Lockheed Martin team up with DARPA and AFRL for hypersonics

Columbia disaster that scuttled the space shuttle

NASA validates revolutionary propulsion design for deep space missions

MIT Gas Turbine Laboratory prepares to jet into the future

TIME AND SPACE
Making the Most of Limited Data: Sols 3278-3279

Perseverance completes Mars Sample Depot

Is there life on Mars? Maybe, and it could have dropped its teddy

Dust bedevils Perseverance with damaging winds

TIME AND SPACE
China's Deep Space Exploration Lab eyes top global talents

Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

TIME AND SPACE
Iridium GO exec redefines personal off-the-grid connectivity

Inmarsat-6 F2 satellite arrives on board an Airbus Beluga in Florida for launch

Ovzon receives first SATCOM-as-a-Service order from Spain

SpaceX launches 56 more Starlink satellites in heaviest payload yet

TIME AND SPACE
Ghostly mirrors for high-power lasers

Rescuing small plastics from the waste stream

Purdue uncovers a new method for generating spinning thermal radiation

IBM and NASA collaborate to research impact of climate change with AI

TIME AND SPACE
Will machine learning help us find extraterrestrial life

AI joins search for ET

Watch distant worlds dance around their sun

Webb Telescope identifies origins of icy building blocks of life

TIME AND SPACE
NASA's Juno Team assessing camera after 48th flyby of Jupiter

Webb spies Chariklo ring system with high-precision technique

Europe's JUICE spacecraft ready to explore Jupiter's icy moons

Exotic water ice contributes to understanding of magnetic anomalies on Neptune and Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.