. 24/7 Space News .
EARLY EARTH
New geochemical tool reveals origin of Earth's nitrogen
by Staff Writers
Cape Cod MA (SPX) Apr 17, 2020

Volcanic gas emissions in Northern Iceland. The research team collected gas samples here that were analyzed as part of this study.

Researchers at Woods Hole Oceanographic Institution (WHOI), the University of California Los Angeles (UCLA) and their colleagues used a new geochemical tool to shed light on the origin of nitrogen and other volatile elements on Earth, which may also prove useful as a way to monitor the activity of volcanoes. Their findings were published April 16, 2020, in the journal Nature.

Nitrogen is the most abundant gas in the atmosphere, and is the primary component of the air we breathe. Nitrogen is also found in rocks, including those tucked deep within the planet's interior. Until now, it was difficult to distinguish between nitrogen sources coming from air and those coming from inside the Earth's mantle when measuring gases from volcanoes.

"We found that air contamination was masking the pristine 'source signature' of many volcanic gas samples," says WHOI geochemist Peter Barry, a coauthor of the study.

Without that distinction, scientists weren't able to answer basic questions like: Is nitrogen left over from Earth's formation or was it delivered to the planet later on? How is nitrogen from the atmosphere related to nitrogen coming out of volcanoes?

Barry and lead author Jabrane Labidi of UCLA, now a researcher at Institut de Physique du Globe de Paris, worked in partnership with international geochemists to analyze volcanic gas samples from around the globe - including gases from Iceland and Yellowstone National Park - using a new method of analyzing "clumped" nitrogen isotopes.

This method provided a unique way to identify molecules of nitrogen that come from air, which allowed the researchers to see the true gas compositions deep within Earth's mantle. This ultimately revealed evidence that nitrogen in the mantle has most likely been there since our planet initially formed.

"Once air contamination is accounted for, we gained new and valuable insights into the origin of nitrogen and the evolution of our planet," Barry says.

While this new method helps scientists understand the origins of volatile elements on Earth, it may also prove useful as a way of monitoring the activity of volcanoes. This is because the composition of gases bellowing from volcanic centers change prior to eruptions. It could be that the mix of mantle and air nitrogen could one day be used as a signal of eruptions.

Research paper


Related Links
Woods Hole Oceanographic Institution
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Early worm lost lower limbs for tube-dwelling lifestyle
Exeter UK (SPX) Feb 28, 2020
Scientists have discovered the earliest known example of an animal evolving to lose body parts it no longer needed. Mystery has long surrounded the evolution of Facivermis, a worm-like creature that lived approximately 518 million years ago in the Cambrian period. It had a long body and five pairs of spiny arms near its head, leading to suggestions it might be a "missing link" between legless cycloneuralian worms and a group of fossil animals called "lobopodians", which had paired limbs all ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Getting Down to Earth with CAVES in Space

CASIS welcomes new NASA ISS National Lab program executive

Insects, seaweed and lab-grown meat could be the foods of the future

NASA researchers look to the future on Earth Day 50

EARLY EARTH
Japanese astronaut prepares for flight aboard SpaceX's Crew Dragon

US Military not sure if Iran's launch of 'military' satellite was successful

Can high-power microwaves reduce the launch cost of space-bound rockets?

Russia starts adapting RD-180 engine used in US for super-heavy Yenisei Rocket

EARLY EARTH
Promising signs for Perseverance rover in its quest for past Martian life

Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

EARLY EARTH
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

EARLY EARTH
Elon Musk's SpaceX launches 60 Starlink satellites from Florida

Momentus selected as launch provider for Swarm

SpaceX plans Wednesday Starlink satellite launch from Florida

US wants to mine resources in space, but is it legal?

EARLY EARTH
Now metal surfaces can be instant bacteria killers

Astronauts, robots and the history of fixing and building things in space

Intelsat 901 Satellite Returns to Service Using Northrop Grumman's Mission Extension Vehicle

Sensors woven into a shirt can monitor vital signs

EARLY EARTH
ASU scientists lead study of galaxy's 'water worlds'

Yale's EXPRES looks to the skies of a scorching, distant planet

Researchers use 'hot Jupiter' data to mine exoplanet chemistry

Hubble observes aftermath of massive collision

EARLY EARTH
Jupiter probe JUICE: Final integration in full swing

The birth of a "Snowman" at the edge of the Solar System

New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.