. | . |
New approach in hunt for dark matter by Staff Writers Mainz, Germany (SPX) Nov 15, 2019
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU). For the first time the researchers are exploring how dark matter influences antimatter instead of standard matter. Their findings are now published in the latest edition of eminent scientific journal Nature. They are the results of research undertaken by scientists at Japan's RIKEN research center, the Max Planck Institute of Nuclear Physics in Heidelberg (MPIK) and the National Metrology Institute Braunschweig (PTB), working jointly in the Max Planck-RIKEN-PTB Center for Time, Constants and Fundamental Symmetries, as well as scientists from CERN, the Johannes Gutenberg University Mainz (JGU), the Helmholtz Institute Mainz (HIM), the University of Tokyo, the GSI Helmholtz Center for Heavy Ion Research in Darmstadt and the Leibniz University Hannover. "To date, scientists have always conducted high-precision experiments at low energies using matter-based samples in the hope of finding a link to dark matter," explains Dr. Christian Smorra, the lead author of the study. Currently working at Japan's RIKEN research institute, he intends to use an ERC Starting Grant to establish a work group at JGU's Institute of Physics. "Now we've decided to search explicitly for interactions between dark matter and antimatter. It is generally assumed that interactions of dark matter will be symmetric for particles and antiparticles. Our study seeks to determine whether this is really the case." The project's participants in fact see a double benefit in this approach: Little is known at this point about the microscopic characteristics of dark matter. At present one much-discussed possible component of dark matter is what is known as ALPs (axion-like particles). Moreover, the standard model of particle physics offers no explanation of why there is apparently so much more matter than antimatter in our universe. "Through our experiments, we hope to find clues that could provide a link between these two aspects," notes Dr. Yevgeny Stadnik, who participated in the study as part of a Humboldt Fellowship at HIM. "Possible asymmetrical interactions of this kind have not yet been explored, neither at the theoretical nor at the experimental level. Our current research work is taking a first real step in that direction."
Captured Antiprotons Could Deliver Insights into Dark Matter An antiproton has both a charge and a spin. Within a magnetic field, the spin precesses around the magnetic field lines at a constant, highly specific rate - known as the Larmor or spin precession frequency. "This means we can detect the presence of dark matter as it influences this frequency," says Christian Smorra. "For this purpose, we assume that potential dark matter particles act in the same way as a classical field with a specific wavelength. The waves produced by dark matter pass continuously through our experiment and thus have a periodic effect on the spin precession frequency of the antiproton that would otherwise be expected to remain constant." Using their experimental set-up, the researchers have already explored a specific frequency range but without success - no evidence pointing to the influence of dark matter has come to light to date. "We've not yet been able to identify any significant and periodic changes to the antiproton's spin precession frequency using our current measurement concept," explains Stefan Ulmer, spokesperson of the BASE Collaboration at CERN. "But we have managed to achieve levels of sensitivity as much as five orders of magnitude greater than those employed for observations related to astrophysics. As a result, we can now redefine the upper limit for the strength of any potential interactions between dark matter and antimatter based on the levels of sensitivity we've managed to accomplish."
Merging of Two Research Groups Going forward, the scientists hope to further enhance the precision of measurement of antiproton spin precession frequency - an essential requirement if the antimatter-based search for dark matter is to prove successful. In this connection, a team headed by Prof. Jochen Walz at the Institute of Physics at JGU, working in collaboration with MPIK and RIKEN, is developing new methods for cooling protons and antiprotons, while a group of scientists from PTB Braunschweig, the Leibniz University Hannover, and RIKEN is implementing methods for quantum logic based antiproton-spin-state readout. A variety of other promising and similar antiparticle-related studies also beckon, for example, using positrons and antimuons.
Research Report: "Direct Limits on the Interaction of Antiprotons with Axion-like Dark Matter"
WFIRST will add pieces to the dark matter puzzle Greenbelt MD (SPX) Nov 01, 2019 The true nature of dark matter is one of the biggest mysteries in the universe. Scientists are trying to determine what exactly dark matter is made of so they can detect it directly, but our current understanding has so many gaps, it's difficult to know just what we're looking for. WFIRST's ability to survey wide swaths of the universe will help us figure out what dark matter could be made of by exploring the structure and distribution of both matter and dark matter across space and time. Wh ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |