Subscribe free to our newsletters via your
. 24/7 Space News .

New Method Finds Best Candidates for Telescope Time
by Amanda Doyle for Astrobiology Magazine
Moffett Field CA (SPX) Jul 22, 2015

Light being refracted in the atmosphere of the Earth can sometimes create a halo around the Sun or Moon. Similarly, light from another star being refracted in an exoplanet atmosphere can cause an increase in the amount of light detected from the star just before the planet transits. Image courtesy Doug Wilson.

If life exists on planets beyond our Solar System, its presence could be obscured by the haze and clouds in the planet's atmosphere. Even next generation telescopes - such as the James Webb Space Telescope (JWST) as well as ground-based telescopes like the European Extremely Large Telescope (E-ELT) - will have a hard time penetrating such hazy worlds in search of biomarkers.

Astronomers Amit Misra and Victoria Meadows of the University of Washington have developed a new technique to check if a planet has clear skies, which will make it easier for astrobiologists to target the most promising exoplanet candidates for life. Their research has been published in the Astrophysical Journal Letters and was funded by the NASA Astrobiology Institute element of the Astrobiology Program at NASA.

Hazy worlds
As a planet transits a star, light from that star passes through the planet's atmosphere and certain molecules in the planet's atmosphere absorb the light, enabling astronomers to measure the composition of the atmosphere. This technique is known as transit transmission spectroscopy, and extending this to Earth-like planets is quite a challenge.

The height of the atmosphere of a potentially habitable planet is minuscule compared to that of a gas giant or icy planet close to its host star, so catching the light of the star as it passes through the atmosphere of an Earth-like planet will require extremely lengthy observations. For example, JWST would require around 200 hours to detect the spectrum, while the E-ELT would need at least 20 hours. Even with extensive observations, it is possible that the spectrum would reveal nothing if all the atmospheric features were masked by clouds or haze.

"We've seen a couple of cases already in which observers have spent substantial telescope time on a single target only to get a flat, featureless spectrum," says Misra. "Telescope time is valuable, so it would be useful to know which exoplanets to spend hundreds of hours on beforehand."

Planets with halos
Misra and Meadows have thought of a solution to this problem. On Earth, light can be refracted by ice crystals in the atmosphere resulting in a halo around the Sun or Moon. The same principle can be applied to exoplanets, as the starlight being refracted in the planet's atmosphere can create a halo around the planet.

Transiting exoplanets are revealed through a regular dip in light from the star. The refraction halo amplifies the light a little so that it can be seen as a bump in the light curve.

"We can see the effect in the light curve prior to and after the transit itself, and you don't need transit transmission spectroscopy, you could just measure brightness," explains Meadows.

A planet covered in clouds or haze would not refract light easily, as the atmospheric layer where the refraction occurs would be murky and block the light. Therefore, if refraction was detected, it would imply that the planet has a clear atmosphere and is an excellent target for follow up spectroscopy.

The scientists used computer models to predict the strength of the refractive signal that would be detected for different types of planetary atmospheres. They simulated Solar System planet atmospheres, as well as super-Earths and mini-Neptunes, while also taking into account the distance of the planet from the star, as this will affect the angle of deflection of the light.

Their results showed that planets akin to Saturn would have the highest signal, as they are large in size. They also have the advantage of having a lower surface gravity than the higher mass Jupiter planets, meaning that the atmosphere is quite extended. For both Jupiter and Saturn analogue planets, JWST could detect a refracted light signal in less than ten hours. E-ELT could detect signals from super-Earths and mini-Neptunes in the same amount of time. In contrast, a hazy planet would need more than 100 hours of E-ELT time before the refraction signal could be distinguished.

Earth-like atmospheres
E-ELT has the potential to detect habitable exoplanets with clear skies. Of course this does not mean that no clouds are present at all, as clouds on Earth are essential for the water cycle.

"Earth's water clouds are typically close to the surface, and while they can reduce the detectability of molecular absorption features in transit transmission, work that I and others have done has shown that it should still be possible to detect features from gases like carbon dioxide, water, and possibly even oxygen for a cloudy, Earth-like planet," says Misra.

This new work is an important step forward towards characterizing atmospheres of Earth-like planets. By only needing a few hours of E-ELT time to see if a planet has an atmosphere worthy of follow up, the longer observations can then be used to acquire the spectra that are vital in the search for life.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Astrobiology Magazine
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

ARIEL mission to reveal 'Brave New Worlds' among exoplanets
London, UK (SPX) Jul 17, 2015
An ambitious European mission is being planned to answer fundamental questions about how planetary systems form and evolve. ARIEL will investigate the atmospheres of several hundreds planets orbiting distant stars. It is one of three candidate missions selected last month by the European Space Agency (ESA) for its next medium class science mission, due for launch in 2026. The ARIEL mission ... read more

Smithsonian embraces crowdfunding to preserve lunar spacesuit

NASA Sets Sights on Robot-Built Moon Colony

Technique may reveal the age of moon rocks during spaceflight

Russia to Land Space Vessel on Moon's Polar Region in 2019

Celebrating 50 years of Martian imagery

Curiosity rover finds evidence of Mars' primitive continental crust

Never Get Lost on Mars Again With NASA's New Red Planet Map

Opportunity Rover's 7th Mars Winter to Include New Study Area

Space crew praises US-Russian 'handshake in space' 40 years on

Planetary Resources' First Spacecraft Successfully Deployed

NASA selects leading-edge concepts for continued study

US selects four astronauts for commercial flight

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

Student satellite wins green light for Station deployment

'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Ariane 5 orbits Star One C4 and MSG-4 on Arianespace's sixth flight in 2015

CRS-7 Investigation Update

EUTELSAT 8 West B satellite arrive in French Guiana

Ariane 5 lofts two geo birds for teleco and weather customers

Astronomers bring a new hope to find 'Tatooine' planets

The Planetary Sweet Spot

ARIEL mission to reveal 'Brave New Worlds' among exoplanets

Bricks to build an Earth found in every planetary system

Trapped light orbits within an intriguing material

For faster, larger graphene add a liquid layer

ISS astronauts dodge flying Russian space debris

Indra Finishes Implementation Of Main Center For Paz Satellite

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.