|
. | . |
|
by Staff Writers London, UK (SPX) Jul 17, 2015
An ambitious European mission is being planned to answer fundamental questions about how planetary systems form and evolve. ARIEL will investigate the atmospheres of several hundreds planets orbiting distant stars. It is one of three candidate missions selected last month by the European Space Agency (ESA) for its next medium class science mission, due for launch in 2026. The ARIEL mission concept has been developed by a consortium of more than 50 institutes from 12 countries, including UK, France, Italy, Germany, the Netherlands, Poland, Spain, Belgium, Austria, Denmark, Ireland, Portugal. The mission will be presented today at the Pathways 2015 conference in Bern, Switzerland, by ARIEL's Principal Investigator, Prof Giovanna Tinetti of UCL. "The essential nature of exoplanets is still something of a mystery to us: despite finding nearly 2000 exoplanets we haven't yet found any discernible pattern linking the presence, size or orbital parameters of a planet to what its parent star is like," said Tinetti. "If we are going to answer questions, such as how is the chemistry of a planet linked to the environment in which it forms, or is its birth and evolution driven by its host star, we need to study a statistically large sample of exoplanets. This is what ARIEL is designed to do." During its 3.5-year mission, ARIEL will observe over 500 exoplanets ranging from Jupiter- and Neptune-size down to super-Earths in a wide variety of environments. While some of the planets known by the time of ARIEL's launch may be habitable, the main focus of the mission will be on exotic, hot planets in orbits very close to their star. Hot exoplanets represent a natural laboratory in which to study the chemistry and formation of exoplanets. In cooler planets, different gases separate out through condensation and sinking into distinct cloud layers. The scorching heat experienced by hot exoplanets overrides these processes and keeps all molecular species circulating throughout the atmosphere. ARIEL will have a meter-class mirror to collect infrared light from distant star systems and to focus it to a spectrometer. This will spread the light into a 'rainbow' and extract the chemical fingerprints of gases in the planets' atmospheres, as the planet passes in front or behind the star. ARIEL will be placed in orbit at Lagrange Point 2 (L2), a gravitational balance point beyond the Earth's orbit, where the spacecraft is shielded from the Sun and has a clear view of the whole night sky. This will maximise its options for observing exoplanets discovered previously by other missions. ARIEL's Project Manager, Paul Eccleston, said "STFC RAL Space is excited to be involved in such an ambitious mission, and one which is crucial to the study of how planets form and evolve. Working with such a large consortium means that we will be able to draw on world leading expertise from around Europe to get the very best results for of the mission."
ARIEL(Atmospheric Remote-Sensing Infrared Exoplanet Large-survey) Facts and Figures Mission lifetime: 3.5 years Payload mass: ~300 kg Dry mass: ~950 kg Launch mass: ~1200kg Destination: L2 Cost: <450 million Euros Launch vehicle: Ariane 6-2
Related Links ARIEL mission Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |