Subscribe free to our newsletters via your
. 24/7 Space News .

For faster, larger graphene add a liquid layer
by Staff Writers
Oxford, UK (SPX) Jul 16, 2015

Comparison of graphene crystals produced on pristine platinum [L] and a silicide 'liquid layer [R]

Millimetre-sized crystals of high-quality graphene can be made in minutes instead of hours using a new scalable technique, Oxford University researchers have demonstrated. In just 15 minutes the method can produce large graphene crystals around 2-3 millimetres in size that it would take up to 19 hours to produce using current chemical vapour deposition (CVD) techniques in which carbon in gas reacts with, for example, copper to form graphene.

Graphene promises to be a 'wonder material' for building new technologies because of its combination of strength, flexibility, electrical properties, and chemical resistance. But this promise will only be realised if it can be produced cost-effectively on a commercial scale.

The researchers took a thin film of silica deposited on a platinum foil which, when heated, reacts to create a layer of platinum silicide. This layer melts at a lower temperature than either platinum or silica creating a thin liquid layer that smooths out nanoscale 'valleys' in the platinum so that carbon atoms in methane gas brushing the surface are more inclined to form large flakes of graphene.

'Not only can we make millimetre-sized graphene flakes in minutes but this graphene is of a comparable quality to anything other methods are able to produce,' said Professor Nicole Grobert of Oxford University's Department of Materials, who led the research. 'Because it is allowed to grow naturally in single graphene crystals there are none of the grain boundaries that can adversely affect the mechanical and electrical properties of the material.'

Co-author Vitaliy Babenko, a DPhil student at Oxford University's Department of Materials, said: 'Using widely-available polycrystalline metals in this way can open up many possibilities for cost-reduction and larger-scale graphene production for applications where very high quality graphene is needed.'

Size-wise the new approach compares favourably with the common 'Scotch tape method,' in which a piece of tape is used to peel graphene fragments off a chunk of graphite, which produces flakes of around 10 microns (0.01 millimetres). Using CVD with just platinum creates flakes of around 80 microns (0.08mm). But with the liquid layer of platinum silicide the researchers show that graphene crystals of 2-3 millimetres can be produced in minutes.

Out of all the techniques currently used to make different types of graphene CVD is the most promising for scaling up into a cost-effective industrial process. The Oxford team believe that their approach could also have benefits beyond speed and quality: with a thicker liquid layer to insulate it the graphene might not have to be removed from the substrate before it can be used - a costly and time-consuming additional step required with all other methods.

'This is a proof of principle study that shows that high-quality graphene, in the form of a single layer of carbon atoms, can be made to the size and timescale that someone looking to build technologies might want,' said Professor Grobert. 'Of course a great deal more work is required before we get graphene technology, but we're now on the cusp of seeing this material make the leap from the laboratory to a manufacturing setting, and we're keen to work with industrial partners to make this happen.'

The researchers say that, in theory, it would be possible to further develop and scale up this technique to produce flakes of graphene in large wafer-sized sheets.

This invention adds to the growing patent portfolio of nanomaterials and their production technologies from Professor Nicole Grobert's Nanomaterials by Design Group. Under a commercialisation programme devised by Isis Innovation, the technology commercialisation company of the University of Oxford, the Group are establishing collaborations with industrial partners as an essential part of developing the Group's products for potential applications. Professor Grobert also plans to manufacture and sell her range of specialty nanomaterials as part of a new business venture.

A report of the research is published in the journal Nature Communications.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Oxford
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Lower cost ultrasound degassing now possible in processing aluminum
Uxbridge, UK (SPX) Jul 09, 2015
Having proved that ultrasound degassing of molten aluminium alloys is cleaner, greener and cheaper than current methods, a team of scientists from Brunel University London working within a European consortium has now taken the breakthrough a step further. De-gassing the melts of aluminium alloys is a vital process otherwise the resulting solid metals end up being highly porous and often re ... read more

Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

NASA wants to send microbes to Mars to prepare for human habitation

Could This Become the First Mars Airplane

US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

NASA Gears Up to Test Orion's Powerhouse

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Russia launches Soyuz Progress with supplies for ISS

India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

Lower cost ultrasound degassing now possible in processing aluminum

New computer program may fix billion-dollar bit rot problem

Brownian motion phenomena of self-powered liquid metal motors

Omnidirectional free space wireless charging developed

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.