24/7 Space News
EXO WORLDS
Nanosatellite shows the way to RNA medicine of the future
... in the end it's all just soup.
Reuters Events SMR and Advanced Reactor 2025
Nanosatellite shows the way to RNA medicine of the future
by Staff Writers
Aarhus, Denmark (SPX) Feb 28, 2023

The RNA molecule is commonly recognized as messenger between DNA and protein, but it can also be folded into intricate molecular machines. An example of a naturally occurring RNA machine is the ribosome, that functions as a protein factory in all cells.

Inspired by natural RNA machines, researchers at the Interdisciplinary Nanoscience Center (iNANO) have developed a method called "RNA origami", which makes it possible to design artificial RNA nanostructures that fold from a single stand of RNA. The method is inspired by the Japanese paper folding art, origami, where a single piece of paper can be folded into a given shape, such as a paper bird.

Frozen folds provide new insight The research paper in Nature Nanotechnology describes how the RNA origami technique was used to design RNA nanostructures, that were characterised by cryo-electron microscopy (cryo-EM) at the Danish National cryo-EM Facility EMBION. Cryo-EM is a method for determining the 3D structure of biomolecules, which works by freezing the sample so quickly that water does not have time to form ice crystals, which means that frozen biomolecules can be observed more clearly with the electron microscope.

Images of many thousands of molecules can be converted on the computer into a 3D map, that is used to build an atomic model of the molecule. The cryo-EM investigations provided valuable insight into the detailed structure of the RNA origamis, which allowed optimization of the design process and resulted in more ideal shapes.

"With precise feedback from cryo-EM, we now have the opportunity to fine-tune our molecular designs and construct increasingly intricate nanostructures", explains Ebbe Sloth Andersen, associate professor at iNANO, Aarhus University.

Discovery of a slow folding trap
Cryo-EM images of an RNA cylinder sample turned out to contain two very different shapes, and by freezing the sample at different times it was evident that a transition between the two shapes was taking place. Using the technique of small-angle X-ray scattering (SAXS), where the samples are not frozen, the researchers were able to observe this transition in real time and found that the folding transition occurred after approx. 10 hours. The researchers had discovered a so-called "folding trap" where the RNA gets trapped during transcription and only later gets released (see video).

"It was quite a surprise to discover an RNA molecule that refolds this slow since folding typically takes place in less than a second" tells Jan Skov Pedersen, Professor at Department of Chemistry and iNANO, Aarhus University.

"We hope to be able to exploit similar mechanisms to activate RNA therapeutics at the right time and place in the patient", explains Ewan McRae, the first author of the study, who is now starting his own research group at the "Centre for RNA Therapeutics" at the Houston Methodist Research Institute in Texas, USA.

Construction of a nanosatellite from RNA
To demonstrate the formation of complex shapes, the researchers combined RNA rectangles and cylinders to create a multi-domain "nanosatellite" shape, inspired by the Hubble Space Telescope.

"I designed the nanosatellite as a symbol of how RNA design allows us to explore folding space (possibility space of folding) and intracellular space, since the nanosatellite can be expressed in cells", says Cody Geary, assistant professor at iNANO, who originally developed the RNA-origami method.

However, the satellite proved difficult to characterize by cryo-EM due to its flexible properties, so the sample was sent to a laboratory in the USA, where they specialize in determining the 3D structure of individual particles by electron tomography, the so-called IPET-method.

"The RNA satellite was a big challenge! But by using our IPET method, we were able to characterize the 3D shape of individual particles and thus determine the positions of the dynamic solar panels on the nanosatellite", says Gary Ren from the Molecular Foundry at Lawrence Berkeley National Laboratory, California, USA.

The future of RNA medicine
The investigation of the RNA origamis contributes to improving the rational design of RNA molecules for use in medicine and synthetic biology. A new interdisciplinary consortium, COFOLD, supported by the Novo Nordisk Foundation, will continue the investigations of RNA folding processes by involving researchers from computer science, chemistry, molecular biology, and microbiology to design, simulate and measure folding at higher time resolution.

"With the RNA design problem partially solved, the road is now open to creating functional RNA nanostructures that can be used for RNA-based medicine, or act as RNA regulatory elements to reprogram cells", predicts Ebbe Sloth Andersen.

Research Report:Structure, folding and flexibility of co-transcriptional RNA origami

Related Links
Aarhus University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?
Copenhagen, Denmark (SPX) Feb 17, 2023
The James Webb Space Telescope - the most precise telescope ever built - was decisive in discovering the frozen forms of a long series of molecules, such as carbon dioxide, ammonia, methane, methanol and even more complex molecules, frozen out as ices on the surface of small dust grains. The dust grains grow in size when being a part of the discs of gas and dust forming around young stars. This means that the researchers could study many of the molecules going into the forming of new exoplanets. ... read more

EXO WORLDS
SpaceX Dragon crew enter International Space Station

NASA awards Unit Price Agreement Tracking System

Global patent filings edge higher in 2022: UN

Commercial Space: NASA Has an App for That

EXO WORLDS
Rocket Lab set for dual launch campaigns in Virginia and New Zealand

Successful flight acceptance hot test of CE-20 cryogenic engine

SpaceX Dragon crew blasts off for ISS

Rocket Lab Signs Multi-Launch Deal to Deploy Satellite Constellation for Capella Space

EXO WORLDS
Got Rock Sample: Sol 3755

Perseverance from Team Curiosity: Sols 3752-3754

NASA's MAVEN spacecraft remains in safe mode after IMU issue

SuperCam's AI capabilities enhanced with AEGIS upgrade

EXO WORLDS
China's space station experiments pave way for new space technology

China solicits logos for manned space missions in 2023

Two crews set for Tiangong station in '23

Large number of launches planned

EXO WORLDS
Intelsat completes multi-orbit inflight Wi-Fi tests

Sidus Space to integrate Edge AI for upcoming satellite constellation operations

Kleos Space joins Ursa Space Virtual Constellation

Public work begins on UK's largest commercial satellite control centre

EXO WORLDS
Scientists believe they've found untapped helium reserves

North American Helium brings newest helium facilities into production

Arralis Technologies acquired by ReliaSat

Is biodegradable better? Making sense of 'compostable' plastics

EXO WORLDS
To new worlds with quantitative spectroscopy

Nanosatellite shows the way to RNA medicine of the future

Removing traces of life in lab helps NASA scientists study its origins

CARMENES project boosts the number of known planets in the solar neighbourhood

EXO WORLDS
Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.